
Preface

This book introduces mathematical tools that are used in analyzing many physical
problems. It has often been noted that, what at first appears to be an abstract
generalization turns out to be not only useful but necessary for many applications.

To provide a focus, we establish what is needed to prove the main theorems of
Chaps. 5 and 6, leaving unproved only two results from potential theory. The
results of these two chapters improve on what we have previously published.
These theorems provide easy methods for the numerical solution of the Dirichlet
problem in two and three dimensions, which for concreteness we interpret as a
problem in steady-state heat conduction. We refer to the literature for numerical
applications, noting here only that such applications amount to a minimization
over the parameters of the theorems.

If a reader is encouraged to learn more about Complex Variables or Linear
Operators on Banach spaces, we will have accomplished our goal.

Theodore Hromadka
Robert Whitley
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Chapter 2
Metric Spaces

Abstract Ideas are introduced to state and understand the Dirichlet problem in
two, three, and N dimensions. These include open sets, boundaries, compact sets,
and (uniformly) continuous functions. The concepts of completeness, sups and infs,
compact sets, and continuous functions are used in the statement and proof of The
Maximum Principle for the solution to the Dirichlet Problem in RN and the Laplace
equation in N variables.

Keywords Metric Space · RN · Convergence · Geometric series · Continuous
functions on a metric space · Open and closed sets · Compact sets · Compact sets
in RN · Sup · Inf · Completeness · The Maximum Principle

The combination of Theorem 4 and the maximum principle shows that there is an
approximate solution to the heat equation for the unit square, given a continuous
function g on the edges of the square, with error as small as desired. Restricting the
continuous function g to the side with 0 ≤ x ≤ 1, y = 0, it can be approximated
to within a given ε > 0 by the finite sum of of Theorem 4. If you add together the
sums for each of the four sides, this sum UN (x, t) is harmonic inside the square and
continuous on the edges because it is the finite sum of functions which have these
properties. And, assuming that an exact solution U (x, t) to this problem exists, the
maximum principle shows that |UN (x, t)−U (x, t)| < ε holds throughout the entire
square. If, for example, you want to compute some isothermal lines, i.e., curved lines
in the square where each point has the same constant temperature, you can compute
them using UN (x, t) with the possible error as small as desired.

In obtaining these results, we have used the fact that the continuous function g
is uniformly continuous and attains its maximum on [0, 1], and that UN (x, t) is
continuous and also attains its maximum on the square and hence on the edge of the
square. Further, in the proof of the Maximum Principle we have used general facts
about the unit square, what is inside the square and what constitutes the edges of the
square.

T. Hromadka and R. Whitley, Foundations of the Complex Variable Boundary 21
Element Method, SpringerBriefs in Applied Sciences and Technology,
DOI: 10.1007/978-3-319-05954-9_2, © The Author(s) 2014



22 2 Metric Spaces

This ideas need to be made precise so that domains more general than the square
can be considered, in R2 as well as in R3. As is often the case, making the discussion
more precise will open up wide areas of application. To discuss the accuracy of
an (numerical) approximate solution of a problem a way of measuring the distance
between solutions is required. A metric is such a measure.

Definition 5 A metric space is a set S on which is defined a measure of distance
between points of S, a metric d, which is a map from pairs of elements of S to the
non-negative real numbers with the properties, for x , y, and z in S: (1) d(x, y) ≥ 0,
and d(x, y) = 0 only if x = y, (2) d(x, y) = d(y, x), and the triangle inequality
(3) d(x, z) ≤ d(x, y) + d(y, z).

This definition abstracts the properties of the metric d(x, y) = |x − y| given by
the absolute value function on the real numbers.

Example 7 On RN , for x = (x1, x2, . . . , xN ) and y = (y1, y2, . . . , yN ) the function

d1(x, y) =
N∑

1

|x j − y j |.

satisfies the conditions for a metric.
Using the definition of the absolute value of a complex number x + iy, which is

defined to be the length of the vector in the plane from (0, 0) to (x, y), |x + iy| =
(x2 + y2)

1
2 , the formula above also gives a metric on C N . In this case, to establish

the triangle inequality requires the Pythagorean Theorem in the plane, which is a fact
about a triangle.

Example 8 On RN , for x = (x1, x2, . . . , xN ) and y = (y1, y2, . . . , yN ), a metric is
given by

d∞(x, y) = max
(|xj − yj| : j = 1, . . . ,N

)
.

and the same formula defines a metric on C N with x j and y j in C .

Example 9 On any inner product space, d(x, y) = ‖x − y‖ defines a metric, the
triangle inequality for the metric is the triangle inequality for an inner product space.
Examples include the usual Euclidean metric on RN :

d2(x, y) =
[

N∑

1

|x j − y j |2
]1/2

.

and the Euclidean metric on C N, given by the same formula.

Definition 6 A sequence of points x1, x2, . . . , xn, . . . in a metric space X converges
to a point x in X if d(xn, x) → 0 as n → ∞.
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For real numbers with the absolute value metric this is the usual definition of
convergence.

An important example of a convergent sequence is given by the partial sums of a
geometric series.

Lemma 4 A geometric series has the form
∑∞

0 rn where −1 < r < 1. The partial
sums converge to 1

1−r .

Proof The N th partial sum of the series is SN = ∑N
0 rn . Since r SN = r +r2+· · ·+

r N+1, SN − r SN = 1 − r N+1, and SN = 1−r N+1

1−r . Let N tend to infinity. Q.E.D.

It is a rare event that a sequence canbe shown to converge to a specificvalue; in gen-
eral the sequence defines the limit to which it converges. For example, suppose that
c1, c2, . . . is a sequence where each cn is one of the integers 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
Then

a = c1
10

+ c2
102

+ c3
103

+ · · ·

is the decimal expansion of the number a = 0.c1c2c3 . . . in the interval [0, 1] How
dowe know that this represents a number in [0, 1]?What is meant by this infinite sum
being equal to a real number is that the sequence of the partial sums SN = ∑N

1
c j

10 j

converges as N tends to infinity, the limiting value being indicated by
∑∞

1
cn
10n . How

can it be shown that this limit exists? Start by considering the series where all the
c j = 1, with partial sum

∑N
1

1
10 j which by the lemma converges to 1

9 , since

SN = 1

9

[
1 − 1

10N

]
.

What about the general number 0.c1c2 . . . in [0, 1]? Consider the difference between
two partial sums SN − SM , N > M . Since each cn satisfies 0 ≤ cn ≤ 9:

0 ≤ SN − SM =
N∑

M+1

c j

10 j
≤ 9

10M

N−M∑

1

1

10 j
<

9

10M
.

From this, it follows that the difference SN − SM tends to zero as N and M tend to
infinity. So, intuitively, the terms of the sequence are getting close to each other for
large N and M, so the sequence must be getting close to something.

Definition 7 A sequence {x1, x2, . . . } in a metric space with metric d is a Cauchy
sequence if d(xn, xm) → 0 as n, m tend to infinity. Ametric space is complete if each
Cauchy sequence converges; that is, for any Cauchy sequence {xn} there corresponds
an element x in the space with d(xn, x) → 0 as n → ∞.

It is a basic fact that the real numbers, with the usual absolute value metric, are
complete. This is true because the real numbers are constructed to be complete,
starting with the integers and with little beside mathematical induction as a tool.
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The construction involves many details, and solves a mathematical problem which
was open for over 2000 years, beginning when the ancient Greeks discovered that
the rational numbers were not sufficient for geometry; one example being that the
diagonal of a right trianglewith sides each of length one is not a rational number—see
exercises.

One consequence of the completeness of the real numbers is the existence of a
real number for each decimal expansion. Generally whenever a numerical value is
defined by a limiting process, completeness is usually required to show that this value
exists.

Definition 8 Definition: Let X and Y be metric spaces and F a function mapping
X to Y ; F : X → Y . The function F is continuous if whenever a sequence {xn}
converges to x in X , the sequence {F(xn)} converges to F(x).

One interpretation of continunity is that if a physical quantity is a continuous
function F of x , then if you measure x accurately enough you will know F(x) with
as much accuracy as you need.

Another formulation of continunity comes from asking how closely the input
value x must be known in order that the output be close to F(x). In this form, if you
want to know the value of F(x) to within a certain error, traditionally denoted by
an (arbitrary) value ε > 0, it is required that the input value y be sufficiently close
to x , this closeness is traditionally denoted by δ > 0, where |x − y| < δ. In spite
of the fact that the appearance of two Greek letters in one definition makes it seem
more complicated than the sequential definition above, the equivalent condition for
continunity in the next lemma reflects an important physical property.

Lemma 5 Let X be a metric space with metric dx and Y another metric space with
metric dy. A function F mapping X to Y , F: X → Y , is continuous at a point x0 in
X if and only if

Given any ε > 0, there is a number δ > 0, depending on ε and x0, with the
property that if dx (x0, x) < δ, then dy(F(x0), F(x)) < ε.

Proof Suppose the δ − ε condition holds. Let the sequence xn → x0 in X , and
let ε > 0 be given. There is a δ > 0 with the property that if dx (x, x0) < δ then
dy(F(x), F(x0)) < ε. Since xn → x0, there is an integer N with dx (xn, x0) < δ

for n ≥ N , and then dy(F(xn), F(x0)) < ε, showing that F(xn) converges to F(x0)
and so that F is continuous at x0.

Suppose that F is continuous at x0. We show that the δ − ε condition holds by
assuming that it does not, i.e., for some ε1 > 0 an appropriate δ > 0 cannot be
found. This means that for each integer n and δ = 1/n, there is a point xn in X with
dx (xn, x0) < 1/n but dy(F(xn), F(x0)) ≥ ε1. But then xn → x0 yet F(xn) does not
converge to F(x0), contrary to the continunity of F at x0. Q.E.D.

Ametric space has two important related classes of sets. The applied heat equation
problem of Chap.1 was stated for the unit square, and the proof of the maximum
principle for the square used the notion of points being inside the square and points

http://dx.doi.org/10.1007/978-3-319-05954-9_1
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being on the sides of the square. These ideas need to be extended to more general
domains, and that is done in terms of two classes of sets in a metric space.

Definition 9 Let X be a metric space with metric d. (1) A subset A of X is open if
for each point x in A, there is a r > 0 so that the sphere about x with radius r,

S(x, r) = {y : d(y, x) < r}

is contained in A: S(x, r) ⊂ A. (2) A subset B of X is closed if whenever a sequence
of point x1, x2, . . . of points of B converges to x , this limit point x also belongs to B.

Lemma 6 Let X be a metric space with metric d. A subset A of X is open if and only
if the set B of all points of X which are not in A, written B = X − A = Ac (“c” for
the set complementary to A) is closed.

Proof Let A be open and suppose that a sequence of points x1, x2, . . . from B con-
verges to a point x . This point cannot be in A, for if it were, then because A is open
there would be a sphere S(x, r) ⊂ A, and, by convergence the {xn} would be in A
for large n, and these xn would be both in A and the complementary set B, which is
not possible.

Let B be closed, and let x be a point in A. We want to show that there is a sphere
S(x, r) ⊂ A. Assume this is not true, then for each n the sphere S(x, 1/n) is not
contained in A and so there is a point xn in this sphere and not in A therefore in B.
But then the sequence of point x1, x2, . . . in B converges to x not in B, which cannot
be. Q.E.D.

In the metrics space R with the absolute value metric, the interval (0, 1) is open,
the interval [0, 1] is closed, and the interval (0, 1] is neither open nor closed.

For the unit square of the heat equation problem, the inside of the square is open
and the edge of the square, as well as the entire square, is closed.

Definition 10 Let A be a set in a metric space X. The interior of A, written Ao is the
largest open set contained in A. The closure of A, written A, is the smallest closed
set containing A.

Intervals in R, (0, 1]0 = (0, 1) and (0, 1] = [0, 1] The inside of the unit square
is the interior of the square and the square (including its edges) is its own closure as
it is itself closed.

The next idea needed in order to discuss harmonic functions on general domains
corresponds to being given a continuous function g on the edge of the square. For an
arbitrary set A the concept corresponding to the edge of the square is the boundary
of A.

Definition 11 The boundary of a set A in a metric space X consists of those points x
of X which have the property that any sphere S(x, r) about x intersects both A ands
its complement X − A.
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In one dimension, if A is an interval—any of (a, b), [a, b), or [a, b]—the boundary
of A is the set consisting of the two points {a, b}.

The proof of the Maximal Principle relies on the fact that a function continuous
on the closed unit square attains its maximum on the square.

Definition 12 For a set S of real numbers, the number sup(S), the supremum of S,
is defined to be the least upper bound for the set S: so M = sup(S) if (1) M is an
upper bound, i.e., all s in S satisfy s ≤ M and (2) it is the smallest upper bound, so
that if M ′ < M , then there is at least one point s0 in S for which M ′ < s0.

In the older literature, the supremumof S was called the “least upper bound,”which
ismuchmoredescriptive than “sup,” andwas indicatedby l.u.b.(S), pronounced “lub.”

Example 10 sup((0, 1]) = 1; sup((0, 1) = 1, in the the first case the supremum of
the set (0, 1] is attained in the sense that it belongs to the set (0, 1] while this is not
true for the set (0, 1) having the same supremum.

The fact that a set of real numbers has a supremum is a consequence of the com-
pleteness of the reals. For an example where completeness is not available suppose
you were considering sets of rational real numbers, and wanted to find in the rational
numbers a supremum for any set with an upper bound. The set S = {x : x2 < 2}
shows that this is not possible since there is no rational number which is a least
upper bound for S. For any rational number which is an upper bound for S, there is
a smaller rational number which is also an upper bound—just take a better rational
approximation to the real number

√
2 which is the least upper bound for the set in

the real numbers.

Lemma 7 A set S of real numbers which has an upper bound, s ≤ M for all s in S,
has a least upper bound.

Proof Let B be the set of all real numbers which are upper bounds for S which is not
empty since M belongs to B, and let A be all the real numbers which are not in B.

Begin an inductive procedure as follows. Choose a1 in A. Since a1 is not a bound
for S there is a point s1 in S larger than a1. Set b1 = M , and note

a1 < s1 ≤ b1.

and let d = b1 − a1. Consider the average value c = a1+b1
2 . If c is a bound for S, let

b2 = c, and let a2 = a1; but if c is not a bound for S, take a2 = c and b2 = b1. Then
since a2 is not a bound for S but b2 is, there is a point s2 in S, and

a2 < s2 ≤ b2

with b2 − a2 = d
2 . After n steps of we have the points

an < sn ≤ bn



2 Metric Spaces 27

with an not a bound for S, sn in S, bn a bound for S, with bn − an = d
2n−1 . All

three sequences are Cauchy and so all converge (to the same limit) b. For any s in S,
s ≤ bn , and so s ≤ b, showing that b is an upper bound for S. Further, if c is a real
number less than b, since sn converges to b, for large enough n, sn > c, showing that
b is indeed the smallest upper bound. Q.E.D.

There is a related concept for lower bounds for a set of real numbers.

Definition 13 For a set S of real numbers, the number inf(S), the infimum of S, is
defined to be the greatest lower bound for the set S: so N = inf(S) if (1) N is an
lower bound, i.e., all s in S satisfy s ≥ N and (2) it is the largest lower bound, so
that if N ′ > N , then there is at least one point s0 in S with N ′ > s0.

In the older literature, the supremum of S was called the “greatest lower bound”
and was indicated by g.l.b.(S), pronounced “glub.”

Lemma 8 A set S of real numbers which has a lower bound N, s ≥ N for all s in S,
has a greatest lower bound.

Proof Use inf(S) = −sup(−S). Q.E.D.

One more idea is needed in order to work with general domains for the heat
equation, we need the property that a continuous function on that domain will attain
itsmaximum. If f is a continuous functionmapping a domainD into the real numbers,
with M = sup{ f (x) : x ∈ X}, then by the definition of the finite supremum M , for
each n = 1, 2, . . . , since M − 1

n < M , and M is the smallest upper bound for f
on D, there is a point xn in D with M − 1

n < f (xn) ≤ M ; the second inequality
following because M is a bound for all of the function values on D. With this in
mind, you can see that if the sequence x1, x2, . . . converged to a point x in D, then
we would have f (x) = M and the supremum would be attained at this point x. In
order to show that the supremum is attained, it would in fact be enough to have a
subsequence converge; a subsequence of a sequence {xn} being another sequence
formed from terms of the given sequence taken in the same order as the sequence.
The property of compactness, defined below, has many applications.

Definition 14 Let x1, x2, x3, . . . be a sequence of points (of a metric space X). By
a subsequence of this sequence is meant a sequence formed using the points of the
sequence taken in the same order: xn1, xn2, xn3, . . . with 1 ≤ n1 < n2 < n3 < · · · .

A set D in a metric space X is compact if any sequence of points x1, x2, x3, . . .
in D has a subsequence which converges to a point in D.

The following result has, more or less, been built-in to the definitions.

Theorem 5 Let D be a set in a metric space X and f a continuous function mapping
D into the real numbers. If D is compact, then f attains its maximum on D, i.e.,
there is a point x in D, with f (x) = sup{ f (y) : y ∈ D}.
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Since inf{ f (x) : x ∈ D} = −sup{− f (x) : x ∈ D}, a continuous function also
attains its infimum on a compact set.

In order to the apply results about compactness, we need to know which sets are
compact. One property is clear: if a subsequence of points of D is going to converge
to a point which is required to be in D, it seems that D must be closed. An additional
property is needed, and in RN what works is that the set be bounded.

Definition 15 A set D in RN is bounded if it is contained in some sphere: i.e.,
D ⊂ S(x0, r), i.e., there is a point x0 in RN (which can be taken to be zero) with
d(x0, x) < r for all x in D.

Theorem 6 A subset of RN is compact if and only if it is closed and bounded.

Proof First consider a subset D ⊂ R, and a sequence of points {xn} from D. Since D
is bounded it is contained in a sphere, which in R is an interval, say D ⊂ [a, b], and
then |xn −xm | ≤ |b−a|. There are an infinite number of integers 1 < n1 < n2 < · · ·
for which either all the xn j are in [a, a+b

2 ] or in [ a+b
2 , b]. It could be that both of

these hold, but we know that at least one does. In any case, a subsequence is obtained
satisfying: |xn j − xm j | ≤ b−a

2 . To simplify the subscript notation, write xn j = x (1)
j .

The sequence {x (1)
j } has all its values in an interval of length b−a

2 . Then there is a
subsequence of this sequence which is contained in either the right-half or left-half of
this new interval; let {x (2)

j } denote this subsequence and note that |x (2)
n −x (2)

m | ≤ b−a
22

.

Continuing this process for each integer k there is a subsequence {x (k)
j } of the previous

subsequence for which |x (k)
n − x (k)

m | ≤ b−a
2k .

Finally, the sequencewith yn = x (n)
n is a subsequence of the original sequence and

satisfies |yn − ym | ≤ b−a
2m for n ≥ m, and this sequence {yn} is a Cauchy sequence,

which converges, since R is complete, to a point of D, since D is closed.
The proof for D a subset of RN follows directly from the case for R. To simplify

notation, consider R2, and a sequence {(xn, yn)} taken from the closed and bounded
set D. The first coordinate sequence {xn} is bounded and so has a convergent sub-
sequence {xn j } from the result for R. The related second coordinates {yn j } being
a bounded sequence has a convergent subsequence. The sequence which has this
as the second coordinate, has first coordinate which is also convergent since it is a
subsequence of the convergent first coordinate sequence, and so this subsequence
converges in R2 since both its coordinates are convergent sequences; it converges to
a point of D since D is closed. The proof for RN proceeds along the same lines.

The idea of the proof is easy to visualize in R2. A closed and bounded set D in R2

is contained in a square. Let a sequence of points from D be given. Divide the square
by two lines from the midpoints of opposite sides into four squares each one-quarter
the size of the first square. There is a subsequence of the original sequence in at least
one of the smaller squares. Keep up this process of subdividing the square to get
subsequences which whose terms are in smaller and smaller squares and therefore
closer and closer together. Then, as in the case of R, a subsequence can be obtained
whose terms get closer and closer together, so that this sequence is Cauchy and
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so converges to a point in the closed set D. This is sometimes referred to as “Lion
Hunting in the Sahara Desert”. To find the lion (= the limit point of the subsequence)
you enclose the desert in a square, divide the desert into quarters, pick the one the
lion is in, divide the new square into quarters again, pick the one the lion is in, and
continue until you have a square which is just big enough to hold the lion.

To show that D, a subset of RN must be closed and bounded if it is compact, see
the exercises. Q.E.D.

The proof of Theorem 4 of Chap.1 uses the fact below, a useful consequence of
compactness.

Theorem 7 Let K be a compact metric space with metric d and f a continuous
function mapping K into the real numbers. Then f is uniformly continuous, i.e., given
any ε > 0, there is a δ > 0which works for all the x in K, i.e., for any x, if d(x, y) < δ,
then | f (x) − f (y)| < ε.

Proof Let f be as in the theorem and suppose that f is not uniformly continuous.
This means that for some ε0 > 0 you cannot find a δ > 0 that will work for all x;
consequently for each positive integer n and δ = 1/n, there are points xn and yn

with d(xn, yn) < 1/n but | f (xn) − f (yn)| ≥ ε0. By the compactness of K, there
is a subsequence {x ′

n} of {xn} that converges to a point x0 in K. Since d(y′
n, x0) ≤

d(x ′
n, x0) + d(x ′

n, y′
n), the corresponding subsequence of the yn converges to x0

Passing to this subsequences and taking a limit shows that | f (x0) − f (x0)| ≥ ε0,
which cannot be true. Q.E.D.

2.1 Maximum Principle

The concepts are now available for a statement of theMaximumPrinciple in a general
setting.

Theorem 8 Let D be a bounded open set in RN with boundary �. Suppose that
U (x1, x2, . . . , xN ) is a function with continuous second partial derivatives which
satisfies the Laplace equation

�U (x) =
N∑

1

∂2U

∂x2j
= 0 (2.1)

in D, and which is continuous on the closure of D. Then U attains its maximum (and
minimum) on the boundary � of D.

Proof The proof is a simple adaptation of the proof of the the maximum principle
for the square. Q.E.D.

Note that the Maximum Principle is not an existence theorem, it indicates an
important property of the solution assuming that there is a solution. The existence of
a solution will be discussed later.
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One consequence of the Maximum Principle is that there cannot be two different
solutions U and V which satisfy the conditions of the above theorem and which are
both equal to the same continuous function g on the boundary of K, for then U − V
satisfies the conditions of the theorem and is zero on the boundary of K, hence the
maximum and the minimum of U − V are both zero, which is to say that U = V .

2.2 Exercises

1. (Euclid) Show that
√
2 is not a rational number, i.e., it is not equal to the quotient

of two integers n/m, m �= 0. Suppose that
√
2 = n/m. You can assume that n

and m do not have a common factor. (If, say, n = 3N and m = 3M, divide out
the 3, and write n/m = N/M). Squaring, 2 m2 = n2. The square of an odd
number is odd, so n must be even, n = 2k. Then m2 = 2k2, and m is also even;
a contradiction.

2. Using the completeness of RN, show that C N is complete.
3. Show that a compact subset of RN must be closed and bounded.
4. Show that a subset of C N is compact if and only if it is closed and bounded.
5. Let X be a metric space with metric d. Define

d0(x, y) = d(x, y)

1 + d(x, y)
.

(i) Show that d0(x, y) is a metric, and that a subset of S is closed with respect to
the metric d if and only if it is closed with respect to the metric d0, and (X, d)

and (X, d0) also have the same open sets. (ii) Every subset A of X with the
metric d0 is bounded. (iii) Consequently, it is false in general that a subset of an
arbitrary metric space is compact if it is closed and bounded. (iv) The subset A
of the metric space (X, d) is totally bounded if every sequence of points of A
has a Cauchy subsequence. Show that A is compact if and only it is closed and
totally bounded.

6. Let f and g be continuous maps from a metric space X to the real numbers.
Show that f (x) + g(x), f (x)g(x), and, if g is never zero, 1

g(x)
, are continuous.

7. Show that if K is a compact metric space and f a continuous map of K into
another metric space, then f is uniformly continuous.

8. Give an example of a continuous real-valued function defined on (0, 1) which is
continuous but not uniformly continuous.

9. Show that
√

x is uniformly continuous on [0, 1].
10. Let f map the compact metric space X into the metric space Y . Show that the

image of X under f , i.e., the set of all points y in Y for which there is an x in
X with y = f (x), is compact. For example, if K is a compact set in R2, the
projections onto the x-axis and y-axis are compact sets in R.
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