
Background
Solution of groundwater contamination problems continue to be of high 
interest to engineers and planners, among others. An important problem is 
identifying the source of contamination within a cluster of candidate 
sources. A key question is which candidate source(s) is the actual source 
point of the subject contamination. The approach used in modeled the flow 
field with a high accuracy computational model and tracked the streamlines 
to identify those streamlines that indicate delivery of flow to the location of 
the contamination detection. Then, a streamline is identified that intersects 
the detection point location and the actual source of the subject 
contamination.  A study compared the finite element method to the complex 
variable boundary element method (CVBEM), and it was concluded that 
CVBEM is more accurate. 

Methodology

Error Function

To compute error, since we are modeling harmonic functions with harmonic 
functions, the absolute error function is also harmonic. Therefore, by the 
maximum principle of harmonic functions, the approximation function's 
maximum error is located on the problem boundary. For example, let 𝜙 be 
a harmonic function on domain Ω. "𝜙 is a harmonic function that 
approximates 𝜙. Thus, 𝜙 − "𝜙 is harmonic in Ω. Consequently, 
𝑚𝑎𝑥(",$)∈' 𝜙 − "𝜙 = 𝑚𝑎𝑥(",$)∈(' 𝜙 − "𝜙 .

Node Position Algorithm (NPA)

1.Generate an initial set of candidate nodes outside of the problem domain 
and boundary and candidate collocation points on the problem boundary. 
The model starts with n=0 selected nodes and m=0 selected collocation 
points.

2.Select two collocation points to use in the model (m=m+2). 
3.Loop through each node, adding it to the selected nodes to create a n+1 

node model. Analyze error and select the n+1 node model with the least 
maximum absolute error. There are now n=n+1 selected nodes.

4.Evaluate the absolute error of the n node model on the boundary and 
locate the two greatest maxima. These two points will be the next two 
collocation points. 

5.Repeat steps 3 and 4 until the desired number of nodes is achieved.

This study seeks to compare the accuracy of the NPA in CVBEM to the 
NPA in MFS and determine the feasibility of using MFS to achieve the 
same task. Specifically, the NPA coupled with a uniform, circular, and donut 
distributions of candidate nodes in MFS compared to the previously used 
CVBEM method with the NPA.
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Results

CVBEM produced the most accurate model beating MFS grid by 
approximately 1 order of magnitude. However, at 52, 54,56, and 
84 degrees of freedom, MFS grid performs slightly better than 
CVBEM, which indicates that MFS can achieve error at least as 
low as the CVBEM. The error of MFS circle and donut both 
appear to plateau after approximately 55 degrees of freedom, 
which indicates that their candidate note distribution is not 
conducive to computational accuracy. The streamline plots for 
ground water flow analysis were only analyzed MFS grid and 
CVBEM grid because only MFS grid produced relatively similar 
computational error to CVBEM grid. However, the streamline plot 
attained from MFS grid through application of the Cauchy 
Riemann contained jagged streamlines compared to the CVBEM 
streamline plot. Thus, ground water contamination analysis cannot 
currently be done using MFS. Further investigation should explore 
and possibly resolve why this behavior occurs and compare the 
computational efficiency of MFS in comparison to CVBEM 
because it may perform faster due to only using real numbers. 
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Example Problem
Domain: Ω = 𝑓{0 ≤ 𝑥 ≤ 8, 0 ≤ 𝑦 ≤ 5, (𝑥 − 5))+𝑦) ≥ 1}
PDE: ∇)ψ = 0
BC’s: ψ x, y = ℜ 𝑧) + 𝑧 + *+

,-.
, (𝑥, 𝑦) ∈ 𝜕Ω

General MFS Approximation Function
• Linear combination of real functions that are analytic on problem domain Ω:

!𝜙 𝒙 =%
!"#

$

𝑎!𝑔! 𝒙 , 𝒙 ∈ Ω

• 𝑎! is a real coefficient
• 𝑔! 𝒙 are harmonic basis functions
• 𝑛 is number of basis functions
• 𝑛 degrees of freedom

General CVBEM Approximation Function

• Linear combination of complex functions that are analytic on problem domain Ω:

-𝜔 𝑧 =%
!"#

$

𝑐!𝑔! 𝑧 , 𝑧 ∈ Ω

• 𝑐! = 𝛼! + 𝑖𝛽!, 
• 𝑔! 𝑧 are analytic complex basis functions
• 𝑛 is number of basis functions
• 2𝑛 degrees of freedom

Figure 1: Candidate collocation and node locations Figure 2: Problem geometry after NPA

Figures 3A-C: 3A and 3B are the resulting 
streamline plots from the MFS and 
CVBEM approximations. 3C plots the 
log10 error over the CVBEM and MFS 
approximations
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