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Overview of DHM
• The Diffusion Hydrodynamic Model (DHM) is a “Legacy” hydrodynamics code for unsteady flow problems 

such as rainfall runoff modeling, channel floodplain interface modeling, and other free surface flow 
problems.

• Developed in the late 1970s to early 1980s (published in 1987)

• Written in Fortran 77 convention

• Repeatedly validated over the years with numerous publications

• Equation formulation and solution method makes for a lightweight, reliable solution to many free surface 
flow problems

• However, DHM is subject to the limitations of its time, so setting up a new problem is an entirely manual
process

GOAL: Leverage advancements in modern programming languages to automate problem creation and data 
analysis via preprocessing and postprocessing Python scripts
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Diffusion Hydrodynamic Model
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• Governing flow equations for DHM are derived based on continuity and momentum

Continuity:
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qi = flow rate per unit width in i direction 
H = water surface elevation
h = flow depth
S = Friction slope 

• The solution can be greatly simplified by 
assuming that diffusion is dominant
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• Once we assume that diffusion is dominate, the equation of motion reduces to 

𝑞! = −𝐾!
𝜕𝐻
𝜕𝑥!

• We can now substitute the above equation for discharge into the continuity equation to form a single
equation of motion for DHM
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𝜕𝑡

=
𝜕
𝜕𝑥!

𝐾!
𝜕𝐻
𝜕𝑥!

• Where K is a variable derived from the Manning 
formula

• Due to this simple assumption, we have 
reduced a coupled system of PDEs into a single 
PDE



Overview of the Solution Method
• Requires a uniform, structured, square grid
• At each node, Manning’s n, elevation, and initial flow depth are 

required
• Additionally, we must identify each cell’s neighbors (N, E, S, W)

• Once set, the solution method proceeds is as follows:
1. Compute average Manning n and geometric quantities for 

between nodal points
2. Estimate the nodal water surface elevation (H) for next time 

step 𝑡 + Δ𝑡
3. Estimate the value of 𝑚! (set to 0 for full DHM)
4. Recalculate 𝐾! using the approximate 𝑚!

5. Determine new H at 𝑡 + Δ𝑡
6. Return to step #3 and iterate until 𝐾! matches the mid time 

step estimates
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Full DHM assumption leads to fast convergence!!



DHM Input File
• DHM is run based on the inputs of a single formatted input file

• Two main blocks of the input file:

• The first contains the grid connections (N, S, E, W), manning n value, elevation, and 
initial water depth for every cell in the computational domain

• The second contains the indices of all cells containing the water channel and their 
associated manning n value, width of the channel, depth of the channel, and initial 
water depth
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GOAL: Automate the creation of the DHM input file using files generated by standard 
GIS tools (shape files and terrain rasters)

METHOD: Use Python and leverage its many packages, mainly Pandas, GeoPandas, and    
RasterIO



Grid Generation

• The first step is to discretize the physical domain and find the associated grid 
connections

• Start with a shape file defining the 
floodplain region

• Using GeoPandas, create a 
georeferenced MxN grid fully 
encompassing the region

• Using GeoPandas intersection()
function delete all cells not 
intersecting with the region

• Similarly, identify the channel cells, by 
flagging cells that intersect with the 
river 7



Grid Connections

• Once the grid is defined, we need to identify all the grid connections

• The grid connections are described by the grid ID numbers at the four cardinal directions 
(North, East, South, West)

• First use GeoPandas to compute and store
the centroids of each cell

• Loop through all cells:
• If the cells share a centroid coordinate 

(either X or Y), they might be neighbors 
(either North/South or East/West)

• Neighbors are confirmed if the centroids 
are one cell width apart

• The full grid information is updated and 
stored in a Pandas DataFrame
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Terrain Elevation Data

• After the grid is fully formed and connected, we need to assign an elevation for each 
grid cell
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• The elevation data is typically contained 
in georeferenced raster files

• If the region is large, the data might be 
contained in multiple raster files (can 
become unwieldy)

• Use Rasterio to merge all of the raster 
files into one combined file



Terrain Elevation Data
• Now we have a single raster image 

containing all the elevation data

• Loop over every grid cell:
• The grid cells will not necessarily be 

fully filled with raster data

• Use Rasterio to ”mask” the terrain 
data by the grid cell and average 
over the cell

• Store this value in the Pandas 
DataFrame alongside the grid 
connection data
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Miscellaneous Grid Inputs

• Manning n values are defined by shape files defining each region with a corresponding 
manning region

• Use GeoPandas to fill the manning n values into the DataFrame by identifying the 
intersection of the grids and the manning polygons

• Initial water surface elevation is 
usually set to zero, but can be filled via 
raster file similar to the elevation

• The Pandas DataFrame now contains 
the grid connections, the manning 
value, the elevation, and the initial 
water surface elevation
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Channel Grid Information

• We have previously identified the grid cells that contain the channel

• These cell IDs are stored in a separate Pandas DataFrame along with associated manning 
values

• Need to fill in the river width and depth:

• Read the river bathymetry raster file if 
separate from the terrain data, 
otherwise reuse elevation

• To compute river width:
• Use GeoPandas, to easily access the 

length and area of the shape defining 
the river

• Compute effective width of the 
channel as area/length

• Store this information in the channel
DataFrame 12



Miscellaneous Channel Inputs

• The initial depth is set to zero, but can also be read in through a raster
• The channel inflow cell and outflow cell must be identified by finding the cell that 

contains the head and tail of the river
• The head and tail of the river are flagged as Inflow/Outflow boundary conditions in the 

DHM calculation

• At the inflow grid cell, we specify the 
inflow hydrograph (specifying the flow 
rate as a function of time)

• This can be read in as a text file or 
excel spreadsheet

• The outflow cell does not need a 
hydrograph, instead the outflow is 
approximated using a critical depth 
assumption
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Writing the DHM Input File

• We now have everything we need to write the DHM input file conveniently stored in 
Pandas DataFrames!!

• A subroutine takes these dataframes as input and writes a special fixed formatted file (this 
is important, because the Fortran code expects a specific format)

• Use Python f-strings to make writing formatted strings easy
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Running DHM
• The execution of DHM is very fast due to the lightweight Fortran code

• Output is saved in a readable, formatted manner

• While this improves humans readability, it makes computer 
readability more challenging

• Currently working on a post-processing script that will comb through 
the output and read results for automatic plotting and data analysis
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Conclusions and Next Steps

• The Diffusion Hydrodynamic Model (DHM) is a fast, efficient code that has been repeatedly validated 
over the years 

• Modern engineering and scientific codes are expected to include visualization tools or data structures 
that facilitate problem set up, visualization, and analysis

• We created a series of Python routines that will automatically form a DHM input file from standard GIS 
shape and raster files
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https://github.com/nickwimer/pyDHM.git

http://www.diffusionhydrodynamicmodel.com/


