
Modernizing the Diffusion
Hydrodynamic Model

Nicholas Wimer and Ted Hromadka

October 22, 2021
2021 AUTS (ARL-USMA Technical Symposium)

1

Overview of DHM
• The Diffusion Hydrodynamic Model (DHM) is a “Legacy” hydrodynamics code for unsteady flow problems

such as rainfall runoff modeling, channel floodplain interface modeling, and other free surface flow
problems.

• Developed in the late 1970s to early 1980s (published in 1987)

• Written in Fortran 77 convention

• Repeatedly validated over the years with numerous publications

• Equation formulation and solution method makes for a lightweight, reliable solution to many free surface
flow problems

• However, DHM is subject to the limitations of its time, so setting up a new problem is an entirely manual
process

GOAL: Leverage advancements in modern programming languages to automate problem creation and data
analysis via preprocessing and postprocessing Python scripts

2

Diffusion Hydrodynamic Model

3

• Governing flow equations for DHM are derived based on continuity and momentum

Continuity:
𝜕𝑞!
𝜕𝑥!

+
𝜕𝐻
𝜕𝑡 = 0

Momentum:

𝜕𝑞!
𝜕𝑡

+
𝜕
𝜕𝑥!

𝑞!"

ℎ
+

𝜕
𝜕𝑥#

𝑞!𝑞#
ℎ

+ 𝑔ℎ 𝑆! +
𝜕𝐻
𝜕𝑥!

= 0

qi = flow rate per unit width in i direction
H = water surface elevation
h = flow depth
S = Friction slope

• The solution can be greatly simplified by
assuming that diffusion is dominant

1
𝑔ℎ

𝜕𝑞!
𝜕𝑡 +

𝜕
𝜕𝑥!

𝑞!"

ℎ +
𝜕
𝜕𝑥#

𝑞!𝑞#
ℎ ≪ 𝑆! +

𝜕𝐻
𝜕𝑥!

Diffusion Hydrodynamic Model

4

• Once we assume that diffusion is dominate, the equation of motion reduces to

𝑞! = −𝐾!
𝜕𝐻
𝜕𝑥!

• We can now substitute the above equation for discharge into the continuity equation to form a single
equation of motion for DHM

𝜕𝐻
𝜕𝑡

=
𝜕
𝜕𝑥!

𝐾!
𝜕𝐻
𝜕𝑥!

• Where K is a variable derived from the Manning
formula

• Due to this simple assumption, we have
reduced a coupled system of PDEs into a single
PDE

Overview of the Solution Method
• Requires a uniform, structured, square grid
• At each node, Manning’s n, elevation, and initial flow depth are

required
• Additionally, we must identify each cell’s neighbors (N, E, S, W)

• Once set, the solution method proceeds is as follows:
1. Compute average Manning n and geometric quantities for

between nodal points
2. Estimate the nodal water surface elevation (H) for next time

step 𝑡 + Δ𝑡
3. Estimate the value of 𝑚! (set to 0 for full DHM)
4. Recalculate 𝐾! using the approximate 𝑚!

5. Determine new H at 𝑡 + Δ𝑡
6. Return to step #3 and iterate until 𝐾! matches the mid time

step estimates

5
Full DHM assumption leads to fast convergence!!

DHM Input File
• DHM is run based on the inputs of a single formatted input file

• Two main blocks of the input file:

• The first contains the grid connections (N, S, E, W), manning n value, elevation, and
initial water depth for every cell in the computational domain

• The second contains the indices of all cells containing the water channel and their
associated manning n value, width of the channel, depth of the channel, and initial
water depth

6

GOAL: Automate the creation of the DHM input file using files generated by standard
GIS tools (shape files and terrain rasters)

METHOD: Use Python and leverage its many packages, mainly Pandas, GeoPandas, and
RasterIO

Grid Generation

• The first step is to discretize the physical domain and find the associated grid
connections

• Start with a shape file defining the
floodplain region

• Using GeoPandas, create a
georeferenced MxN grid fully
encompassing the region

• Using GeoPandas intersection()
function delete all cells not
intersecting with the region

• Similarly, identify the channel cells, by
flagging cells that intersect with the
river 7

Grid Connections

• Once the grid is defined, we need to identify all the grid connections

• The grid connections are described by the grid ID numbers at the four cardinal directions
(North, East, South, West)

• First use GeoPandas to compute and store
the centroids of each cell

• Loop through all cells:
• If the cells share a centroid coordinate

(either X or Y), they might be neighbors
(either North/South or East/West)

• Neighbors are confirmed if the centroids
are one cell width apart

• The full grid information is updated and
stored in a Pandas DataFrame

8

Terrain Elevation Data

• After the grid is fully formed and connected, we need to assign an elevation for each
grid cell

9

• The elevation data is typically contained
in georeferenced raster files

• If the region is large, the data might be
contained in multiple raster files (can
become unwieldy)

• Use Rasterio to merge all of the raster
files into one combined file

Terrain Elevation Data
• Now we have a single raster image

containing all the elevation data

• Loop over every grid cell:
• The grid cells will not necessarily be

fully filled with raster data

• Use Rasterio to ”mask” the terrain
data by the grid cell and average
over the cell

• Store this value in the Pandas
DataFrame alongside the grid
connection data

10

Miscellaneous Grid Inputs

• Manning n values are defined by shape files defining each region with a corresponding
manning region

• Use GeoPandas to fill the manning n values into the DataFrame by identifying the
intersection of the grids and the manning polygons

• Initial water surface elevation is
usually set to zero, but can be filled via
raster file similar to the elevation

• The Pandas DataFrame now contains
the grid connections, the manning
value, the elevation, and the initial
water surface elevation

11

Channel Grid Information

• We have previously identified the grid cells that contain the channel

• These cell IDs are stored in a separate Pandas DataFrame along with associated manning
values

• Need to fill in the river width and depth:

• Read the river bathymetry raster file if
separate from the terrain data,
otherwise reuse elevation

• To compute river width:
• Use GeoPandas, to easily access the

length and area of the shape defining
the river

• Compute effective width of the
channel as area/length

• Store this information in the channel
DataFrame 12

Miscellaneous Channel Inputs

• The initial depth is set to zero, but can also be read in through a raster
• The channel inflow cell and outflow cell must be identified by finding the cell that

contains the head and tail of the river
• The head and tail of the river are flagged as Inflow/Outflow boundary conditions in the

DHM calculation

• At the inflow grid cell, we specify the
inflow hydrograph (specifying the flow
rate as a function of time)

• This can be read in as a text file or
excel spreadsheet

• The outflow cell does not need a
hydrograph, instead the outflow is
approximated using a critical depth
assumption

13

Writing the DHM Input File

• We now have everything we need to write the DHM input file conveniently stored in
Pandas DataFrames!!

• A subroutine takes these dataframes as input and writes a special fixed formatted file (this
is important, because the Fortran code expects a specific format)

• Use Python f-strings to make writing formatted strings easy

14

Running DHM
• The execution of DHM is very fast due to the lightweight Fortran code

• Output is saved in a readable, formatted manner

• While this improves humans readability, it makes computer
readability more challenging

• Currently working on a post-processing script that will comb through
the output and read results for automatic plotting and data analysis

15

Conclusions and Next Steps

• The Diffusion Hydrodynamic Model (DHM) is a fast, efficient code that has been repeatedly validated
over the years

• Modern engineering and scientific codes are expected to include visualization tools or data structures
that facilitate problem set up, visualization, and analysis

• We created a series of Python routines that will automatically form a DHM input file from standard GIS
shape and raster files

16
https://github.com/nickwimer/pyDHM.git

http://www.diffusionhydrodynamicmodel.com/

