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New Benchmark Potential Flow Problems
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Figure 1: This benchmark problem requires modeling ideal fluid flow over two consecutive cylinders. This flow situation incorpo-
ates four stagnation points: one stagnation point on each side of both cylinders. The stagnation points are areas of high curvature in
d thess

Figure 2: The CVBEM can be used (0 model mixed bound-
ary value problems. In this case, zero-flux Neumann bound-
ary conditions are specified on the left edge of the prob-
lem domain as well as along the bottom edge of the prob-
lem domain (including over the cylinder obstacle). Dirichlet
boundary conditions are imposed on the top and right edges
of the problem domain. This particular benchmark problem
incorporates three stagnation points: one in the corner a the
origin and one of either side of the cylinder. Due to the diffi-
culty of modeling these stagnation points, w terested
in assessing the performance of various numerical models
with respect to approximating the target potential flow in
these areas.

Comparison of Least Squares versus Collocation Methods

Figure 3: Flow chart de-
picting the least squares ap-

 for determining the co-
efficients of the CVBEM ap-
proximation function. Histor-
ically, the CVBEM has been
implemented using a colloca-
tion approach in which the co-
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20 (where 1 is the number of
terms in the CVBEM approx-
imation function) collocation

ints are used Lo determine
the coefficients of the CVBEM
approximation function.  Re-

determining these coefficients. vis

cients of the CVBEM approx-
imation function.  Using all
of the available boundary data
may be one of the keys to
achieving highly accurate po-
tential models in generalized
three-dimensional settings.
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Model size, n
Figure 4: Maximum error comparisons with 500 candidate
nodes and 1,000 boundary data points. A primary advantage
of the collocation approach is that it guarantees the resulting
CVBEM approximation function will satisfy Dirichlet bound-
ary conditions at no less than 2n locations on the problem
‘boundary, where 7 is the number of linearly independen terms
in the CVBEM approximation function. Meanwhile, a benefit
of the least squares approach is that it incorporates all of the
available boundary data when determining the coefficients of
the CVBEM approximation function.

Figure 5: Computational error results for the collocation and

least squares approaches with regard to modeling the target po-

tential lines with constant values, , specified in the boxes. The
Th

hown in black. ded to

tended to achieve lower maximum errors. The CVBEM models
used 500 candidate nodes and 1,000 boundary data points
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Development of New Basis Functions

Linear combination of two digamma functions:
2) + )
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Figure 6: Domain coloring of the
digamma functions: 1,»(= — 21) +

linear combination of two  Figure
) v

— Figure 8: Uniil now, the CVBEM has always been imple-

Sy (Poes| mented using a single basis function family o generate the
+ Digamma approximation function. Multiple analytic complex variable
basis function families have been considered including func-
tions of the form: (= — =) In( z i,
digamma/polygamma functions, and the Hurwitz Zeta func-

ot approximation functions that use composite basis functions.

mentioned families as well as any analytic complex variable
function, in general. These composite basis functions have
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) d when tested on several
Modsi size, n benchmark potential flow problems.
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error analysis tools, creating new algorithms, solving potential problems in three and higher spatial dimensions, and also modeling
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= Many meshless computational approaches use collocation
of the model at collocation points (usually located on the
boundary) in order to develop a system of linear equations
_ which are then solved simultaneously by the usual matrix-
solving methods.
= The Complex Variable Boundary Element Method
(CVBEM) is a numerical technique for solving partial
differential equations of the Laplace and related types. The

CVBEM is often implemented using collocation, although a
least squares implementation has recently been examined.

= We will examine the underpinnings of the collocation
approach as used with the CVBEM. The Identity Theorem of
complex variables will justify the use of collocation

techniques as the number of linearly-independent terms in
the CVBEM approximation function increases.



_ = Why do collocation methods work? The answer may

have to do with the Identity Theorem of complex

variables:
» = Given functions f and g analyticonadomain D,if f = g
Th c | d c ntlty on some S & D, where S has an accumulation point, then

Theorem f=gonD.

= Thus, an analytic function is completely determined by its
values on a single open neighborhood in D.




The CVBEM develops
an analytic complex

variable
approximation
function

= To work with the Identity Theorem, one may consider that the
CVBEM develops a two-dimensional complex function that is
analytic over the problem domain.

® Thus, both the real and imaginary parts of the CVBEM

approximation function satisfy Laplace’s equation in the
problem domain.

= Furthermore, the difference between the real part of the
CVBEM approximation function and the target potential
function (that is, the error function) satisfies Laplace’s
equation in the problem domain.

This analytic property of the CVBEM approximation function can be used to solve other
partial differential equations such as the and , among
others, where the solution approach is to develop a computational model of the steady-
state conditions using the CVBEM and then solve the remaining components of the PDE
using a particular solution approach.

For related work on the diffusion and wave equations, see:

Wilkins, B.D., Greenberg, J., Redmond, B., Baily, A., Flowerday, N., Kratch, A., Hromadka, T.V., Boucher, R.,

Mclnvale, H.D., Horton, S. (2017) “An Unsteady Two-Dimensional Complex Variable Boundary Element Method.”
SCIRP Applied Mathematics, 8, 8718-891. doi: 10.4236/am.2017.86069.

Wilkins, B.D., Hromadka, T.V., Boucher, R. (2017) “A Conceptual Numerical Model of the Wave Equation Using the
Complex Variable Boundary Element Method.” SCIRP Applied Mathematics, 8, 724-735. doi:
10.4236/am.2017.85057.




The CVBEM

error function

The error of the CVBEM approximation function is
measured as the difference between the approximation
function and the target potential function:

Let:

" &(2) = ¢(x,y) + iY(x,y) = the CVBEM approximation
function

" ¢(x,y) = the target potential function

The error function is defined as follows:

" 5(0y) = d(x,y) — o (x,¥)
= Since ¢ and ¢ are both potential functions, § is also a

potential function

At collocation points, we have ¢(x,y) = ¢(x,y) and,
thus, §(x,y) = 0.



The CVBEM is
implemented to satisfy

domain requirements for
using the Identity
Theorem as established by
Walsh [1]

Where does the Identity Theorem apply?

“In the study of the possibility of approximation to a given function the fundamental theorems were
given by Runge in his classical paper of 1885. These theorems are of the greatest importance in the
present essay; we omit the proofs, however, because they are to be found in many standard works.
Moreover, the method of Hilbert, which we shall consider later in some detail, also includes a proof of
Runge's theorems. We give the name Runge’s first theorem to the following, although Runge's own
statement was somewhat different in content: If the function f(z) is analytic in a closed Jordan region G,
then in that closed Jordan region f(z) can be uniformly approximated as closely as desired by a
polynomial in z. Runge's theorem is more readily proved for the case of a convex region than for the
general case. The two concepts, possibility of uniform approximation by a polynomial with an arbitrary
small error, and uniform expansion in a series or sequence of polynomials, are of course, equivalent
(without reference to the present situation), in the sense that each implies the other directly. Runge's
theorem specifies that the region under consideration shall be a Jordan region; it is essential that the
region not be an arbitrary simply-connected region...”

- [1]J.L. Walsh, 1935.

* For most engineering problems, a Jordan region and a simply
connected region are identical.

* However, when examining specific domain issues involving cracks
and similar type domain irregularities, attention needs to be paid
in the candidate node positioning process so as to preserve the
subtleties involved.

= In the context of the CVBEWV, this means handling branch cuts,
such as by rotating them away from the problem domain.



Background of the Jordan curve theorem

The Jordan curve theorem was "..first proposed in 1887 by French
mathematician Camille Jordan, that any simple closed curve—that is, a
continuous closed curve that does not cross itself (now known as a Jordan
curve)—divides the plane into exactly two regions, one inside the curve and
one outside, such that a path from a point in one region to a point in the other
region must pass through the curve...." They continue that "... This obvious-
sounding theorem proved deceptively difficult to verify. Indeed, Jordan’s
proof turned out to be flawed, and the first valid proof was given by American
mathematician Oswald Veblen in 1905. One complication for proving the
theorem involved the existence of continuous but nowhere differentiable
curves. (The best-known example of such a curve is the Koch snowflake, first
described by Swedish mathematician Niels Fabian Helge von Koch in 1906.)”

An interesting

--- [2] Encyclopedia Britannica

example of a
Jordan region

= The Identity Theorem provides a backdrop for justifying the use of the
collocation methods commonly used in computational modeling.

= A review of several of these proofs shows that for many of these proofs, there
is significant reliance on series expansions, particularly Taylor series, that are
expanded about the computational node locations.

= Because complex analytic functions necessarily have Taylor series
expansions for points within the domain of function definition, the cited work
of [1] ].L.Walsh (1935) again can be applied to examine such approximations
as complex polynomials selected to achieve specified geometric
computational error bounds.
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