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New Benchmark Potential Flow Problems

Figure 1: This benchmark problem requires modeling ideal fluid flow over two consecutive cylinders. This flow situation incorpo-
rates four stagnation points: one stagnation point on each side of both cylinders. The stagnation points are areas of high curvature in
the target solution, and these areas are computationally difficult to model.

Figure 2: The CVBEM can be used to model mixed bound-
ary value problems. In this case, zero-flux Neumann bound-
ary conditions are specified on the left edge of the prob-
lem domain as well as along the bottom edge of the prob-
lem domain (including over the cylinder obstacle). Dirichlet
boundary conditions are imposed on the top and right edges
of the problem domain. This particular benchmark problem
incorporates three stagnation points: one in the corner at the
origin and one of either side of the cylinder. Due to the diffi-
culty of modeling these stagnation points, we are interested
in assessing the performance of various numerical models
with respect to approximating the target potential flow in
these areas.

Comparison of Least Squares versus Collocation Methods

Figure 3: Flow chart de-
picting the least squares ap-
proach for determining the co-
efficients of the CVBEM ap-
proximation function. Histor-
ically, the CVBEM has been
implemented using a colloca-
tion approach in which the co-
efficients of the CVBEM ap-
proximation function are de-
termined so as to exactly sat-
isfy the target boundary con-
ditions at specific locations on
the target boundary. When
collocation is used, a total of
2n (where n is the number of
terms in the CVBEM approx-
imation function) collocation
points are used to determine
the coefficients of the CVBEM
approximation function. Re-
cently, we have incorporated
a least squares approach for
determining these coefficients.
When the least squares ap-
proach is used, all of the avail-
able boundary data is used
when determining the coeffi-
cients of the CVBEM approx-
imation function. Using all
of the available boundary data
may be one of the keys to
achieving highly accurate po-
tential models in generalized
three-dimensional settings.
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Figure 4: Maximum error comparisons with 500 candidate
nodes and 1,000 boundary data points. A primary advantage
of the collocation approach is that it guarantees the resulting
CVBEM approximation function will satisfy Dirichlet bound-
ary conditions at no less than 2n locations on the problem
boundary, where n is the number of linearly independent terms
in the CVBEM approximation function. Meanwhile, a benefit
of the least squares approach is that it incorporates all of the
available boundary data when determining the coefficients of
the CVBEM approximation function.
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Results Using 
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Figure 5: Computational error results for the collocation and
least squares approaches with regard to modeling the target po-
tential lines with constant values, c, specified in the boxes. The
collocation outcomes are shown in color. The least squares out-
comes are shown in black. The collocation outcomes tended to
achieve lower minimum errors while the least squares outcomes
tended to achieve lower maximum errors. The CVBEM models
used 500 candidate nodes and 1,000 boundary data points.
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Development of New Basis Functions
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Figure 6: Domain coloring of the linear combination of two
digamma functions:  ⇡/2(z � 2i) +  ⇡(z � 2) +  3⇡/2(z + 2i).

Figure 7: Linear combination of two digamma functions:
 ⇡/2(z � 2i) +  ⇡(z � 2) +  3⇡/2(z + 2i).
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Figure 8: Until now, the CVBEM has always been imple-
mented using a single basis function family to generate the
approximation function. Multiple analytic complex variable
basis function families have been considered including func-
tions of the form: (z � zj) ln(z � zj), 1/(z � zj), (z � z0)j,
digamma/polygamma functions, and the Hurwitz Zeta func-
tion, among others. Recently, we have developed CVBEM
approximation functions that use composite basis functions.
CVBEM approximation functions built using composite ba-
sis functions can use basis functions from any of the afore-
mentioned families as well as any analytic complex variable
function, in general. These composite basis functions have
resulted in remarkable error reduction when tested on several
benchmark potential flow problems.
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Abstract

§ Many meshless computational approaches use collocation 
of the model at collocation points (usually located on the 
boundary) in order to develop a system of linear equations 
which are then solved simultaneously by the usual matrix-
solving methods.

§ The Complex Variable Boundary Element Method 
(CVBEM) is a numerical technique for solving partial 
differential equations of the Laplace and related types. The 
CVBEM is often implemented using collocation, although a 
least squares implementation has recently been examined.

§ We will examine the underpinnings of the collocation
approach as used with the CVBEM. The Identity Theorem of 
complex variables will justify the use of collocation 
techniques as the number of linearly-independent terms in 
the CVBEM approximation function increases.



The Identity 
Theorem

§ Why do collocation methods work? The answer may 
have to do with the Identity Theorem of complex 
variables:

§ Given functions 𝑓 and 𝑔 analytic on a domain 𝐷, if 𝑓 = 𝑔
on some 𝑆 ⊆ 𝐷, where 𝑆 has an accumulation point, then 
𝑓 = 𝑔 on 𝐷.

§ Thus, an analytic function is completely determined by its
values on a single open neighborhood in 𝐷.



The CVBEM develops 
an analytic complex 

variable 
approximation 

function

§ To work with the Identity Theorem, one may consider that the 
CVBEM develops a two-dimensional complex function that is 
analytic over the problem domain.

§ Thus, both the real and imaginary parts of the CVBEM
approximation function satisfy Laplace’s equation in the 
problem domain.

§ Furthermore, the difference between the real part of the
CVBEM approximation function and the target potential 
function (that is, the error function) satisfies Laplace’s 
equation in the problem domain.

§ This analytic property of the CVBEM approximation function can be used to solve other 
partial differential equations such as the diffusion equation and wave equation, among 
others, where the solution approach is to develop a computational model of the steady-
state conditions using the CVBEM and then solve the remaining components of the PDE 
using a particular solution approach.

§ For related work on the diffusion and wave equations, see:
§ Wilkins, B.D., Greenberg, J., Redmond, B., Baily, A., Flowerday, N., Kratch, A., Hromadka, T.V., Boucher, R., 

McInvale, H.D., Horton, S. (2017) “An Unsteady Two-Dimensional Complex Variable Boundary Element Method.” 
SCIRP Applied Mathematics, 8, 878-891. doi: 10.4236/am.2017.86069.

§ Wilkins, B.D., Hromadka, T.V., Boucher, R. (2017) “A Conceptual Numerical Model of the Wave Equation Using the 
Complex Variable Boundary Element Method.” SCIRP Applied Mathematics, 8, 724-735. doi: 
10.4236/am.2017.85057.



The CVBEM 
error function

§ The error of the CVBEM approximation function is
measured as the difference between the approximation 
function and the target potential function:

§ Let:

§ (𝜔 𝑧 = +𝜙 𝑥, 𝑦 + 𝑖 +𝜓 𝑥, 𝑦 ≡ the CVBEM approximation 
function

§ 𝜙 𝑥, 𝑦 ≡ the target potential function

§ The error function is defined as follows:

§ 𝛿 𝑥, 𝑦 = +𝜙 𝑥, 𝑦 − 𝜙(𝑥, 𝑦)

§ Since 𝜙 and +𝜙 are both potential functions, 𝛿 is also a 
potential function

§ At collocation points, we have !𝜙 𝑥, 𝑦 = 𝜙(𝑥, 𝑦) and, 
thus, 𝛿 𝑥, 𝑦 = 0.



The CVBEM is 
implemented to satisfy 

domain requirements for 
using the Identity 

Theorem as established by 
Walsh [1]

“In the study of the possibility of approximation to a given function the fundamental theorems were 
given by Runge in his classical paper of 1885. These theorems are of the greatest importance in the 
present essay; we omit the proofs, however, because they are to be found in many standard works. 
Moreover, the method of Hilbert, which we shall consider later in some detail, also includes a proof of 
Runge's theorems. We give the name Runge’s first theorem to the following, although Runge's own 
statement was somewhat different in content: If the function 𝑓(𝑧) is analytic in a closed Jordan region 𝐺, 
then in that closed Jordan region 𝑓(𝑧) can be uniformly approximated as closely as desired by a 
polynomial in 𝑧. Runge's theorem is more readily proved for the case of a convex region than for the 
general case. The two concepts, possibility of uniform approximation by a polynomial with an arbitrary 
small error, and uniform expansion in a series or sequence of polynomials, are of course, equivalent 
(without reference to the present situation), in the sense that each implies the other directly. Runge's 
theorem specifies that the region under consideration shall be a Jordan region; it is essential that the 
region not be an arbitrary simply-connected region…”

--- [1] J.L. Walsh, 1935.

§ For most engineering problems, a Jordan region and a simply 
connected region are identical.

§ However, when examining specific domain issues involving cracks 
and similar type domain irregularities, attention needs to be paid
in the candidate node positioning process so as to preserve the 
subtleties involved.

§ In the context of the CVBEM, this means handling branch cuts, 
such as by rotating them away from the problem domain.

Where does the Identity Theorem apply?



An interesting 
example of a 
Jordan region

§ The Identity Theorem provides a backdrop for justifying the use of the  
collocation methods commonly used in computational modeling. 

§ A review of several of these proofs shows that for many of these proofs, there 
is significant reliance on series expansions, particularly Taylor series, that are 
expanded about the computational node locations.

§ Because complex analytic functions necessarily have Taylor series 
expansions for points within the domain of function definition, the cited work 
of [1] J.L. Walsh (1935) again can be applied to examine such approximations 
as complex polynomials selected to achieve specified geometric 
computational error bounds.

The Jordan curve theorem was "..first proposed in 1887 by French 
mathematician Camille Jordan, that any simple closed curve—that is, a 
continuous closed curve that does not cross itself (now known as a Jordan 
curve)—divides the plane into exactly two regions, one inside the curve and 
one outside, such that a path from a point in one region to a point in the other 
region must pass through the curve...."  They continue that "... This obvious-
sounding theorem proved deceptively difficult to verify. Indeed, Jordan’s 
proof turned out to be flawed, and the first valid proof was given by American 
mathematician Oswald Veblen in 1905. One complication for proving the 
theorem involved the existence of continuous but nowhere differentiable 
curves. (The best-known example of such a curve is the Koch snowflake, first 
described by Swedish mathematician Niels Fabian Helge von Koch in 1906.)”

--- [2] Encyclopedia Britannica

Background of the Jordan curve theorem
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