Demonstration of a New Nested Candidate Node Domain Reduction Method for the CVBEM

Bryce D. Wilkins ${ }^{1}$
William Nevils ${ }^{2}$
Prarabdha Yonzon ${ }^{2}$
Theodore V. Hromadka II ${ }^{3}$

${ }^{1}$ Carnegie Mellon University
${ }^{2}$ United States Military Academy
${ }^{3}$ Distinguished Professor, United States Military Academy
bwilkins@andrew.cmu.edu
March 4, 2021

The General CVBEM Approximation Function

The CVBEM approximation function is a linear combination of complex variable functions that are analytic within a given problem domain, Ω :

$$
\begin{equation*}
\hat{\omega}(z)=\sum_{j=1}^{n} c_{j} g_{j}(z), \quad z \in \Omega, \tag{1}
\end{equation*}
$$

where

- $c_{j}=\alpha_{j}+i \beta_{j}$ are complex coefficients (note: 2 real coefficients),
- $g_{j}(z)$ are analytic complex variable basis functions,
- n is the number of basis functions being used in the approximation
- Each term in the approximation function corresponds to one node and two collocation points.

Problem Formulation

The Cauchy integral formula:

$$
\begin{equation*}
\omega(z)=\frac{1}{2 \pi i} \oint_{\Gamma} \frac{\omega(\zeta) d \zeta}{\zeta-z} . \tag{2}
\end{equation*}
$$

Integration of (2) results in the following sum, which is known as the CVBEM approximation function:

$$
\hat{\omega}(z)=\sum_{j=1}^{n} c_{j}\left(z-z_{j}\right) \ln \left(z-z_{j}\right) .
$$

Figure: The boundary is discretized using a set of interpolation points. The interpolation points can be connected using straight line segments to create a polygonal representation.

The CVBEM Modeling Procedure

The CVBEM approximation function is as follows:

- The points z_{j} are the branch points of the logarithm (with branch cuts rotated) and are often referred to as computational nodes.
- The CVBEM can be viewed as a procedure for generating basis functions, such as in (4).
- The generated basis functions are used as inputs for the NPAs.

$$
\begin{equation*}
\hat{\omega}(z)=\sum_{j=1}^{n} c_{j}\left(z-z_{j}\right) \ln \left(z-z_{j}\right) \tag{4}
\end{equation*}
$$

Figure: Rotation of a typical branch cut. The branch point of the basis function corresponds to a node for the NPA.

NPAO

NPA0.5

Hromadka II, T.V. \& Guymon, G.L., A Complex Variable Boundary Element Method: Development. International Journal for Numerical Methods in Engineering, 20, pp. 25-37, 1984.

Johnson, A.N. \& Hromadka II, T.V., Modeling mixed boundary conditions in a Hilbert space with the complex variable boundary element method (CVBEM). MethodsX, 2, pp. 292-305, 2015.

Figure: Originally, nodes were located on the problem boundary.

Figure: Next, nodes were located in a geometric pattern in the exterior of $\Omega \cup \partial \Omega$.

NPA1

Demoes, N.J., Bann, G.T., Wilkins, B.D. Grubaugh, K.E. \& Hromadka II, T.V., Optimization Algorithm for Locating Computational Nodal Points in the Method of Fundamental Solutions to Improve Computational Accuracy in Geosciences Modeling. The Professional Geologist, pp. 6-12, 2019.

Figure: Originally, nodes were located on the problem boundary.

NPA2

Wilkins, B.D., Hromadka II, T.V. \& McInvale, J., Comparison of Two Algorithms for Locating Nodes in the Complex Variable Boundary Element Method (CVBEM). International Journal of Computational Methods and Experimental Measurements, 2020.

Figure: Next, nodes were located in a geometric pattern in the exterior of $\Omega \cup \partial \Omega$.

Demonstration - Problem 1

Figure: Iteration 1

Figure: Iteration 5

Figure: Iteration 2

Figure: Iteration 10

Demonstration - Problem 2

Figure: Iteration 1

Figure: Iteration 3

Figure: Iteration 2

Figure: Iteration 4

Demonstration - Problem 3

Figure: Iteration 1

Figure: Iteration 3

Figure: Iteration 2

Figure: Iteration 4

Candidate Node Space Dimensions and Maximum Error Results, $n=10$ Terms

Iteration	Problem 1		Problem 2		Problem 3	
	x-dim	y-dim	x-dim	y-dim	x-dim	y-dim
1	$[-7.50,7.50]$	$[-4.50,7.50]$	$[-7.00,13.00]$	$[-11.00,11.00]$	$[-6.00,10.00]$	$[-6.00,14.00]$
2	$[-6.32,1.60]$	$[-3.42,0.62]$	$[-5.11,922]$	$[-1.86,2.28]$	$[-6.00,0.03]$	$[-6.00,6.83]$
3	$[-1.15,0.97]$	$[-1.51,0.48]$	$[-0.48,0.14]$	$[-0.51,0.89]$	$[-6.00,0.03]$	$[-6.00,4.40]$
4	$[-0.48,0.95]$	$[-1.15,-0.11]$	$[-0.47,0.14]$	$[-0.43,0.63]$	$[-6.00,0.03]$	$[-3.64,4.40]$
5	$[-0.46,0.92]$	$[-1.02,-0.11]$	$[-0.14,0.14]$	$[-0.41,0.49]$	$[-6.00,0.03]$	$[-3.64,3.95]$

Table: Dimensions of the candidate node space in each iteration of the nested NPA procedure.

Iteration	Problem 1	Problem 2	Problem 3
1	$1.9199 \mathrm{e}-02$	$1.3552 \mathrm{e}-02$	$7.0559 \mathrm{e}-02$
2	$5.2030 \mathrm{e}-03$	$1.2578 \mathrm{e}-04$	$6.8413 \mathrm{e}-03$
3	$2.1795 \mathrm{e}-04$	$6.0301 \mathrm{e}-06$	$2.0753 \mathrm{e}-02$
4	$2.4750 \mathrm{e}-04$	$2.3947 \mathrm{e}-06$	$9.6491 \mathrm{e}-04$
5	$1.2136 \mathrm{e}-04$	$1.8089 \mathrm{e}-07$	$6.0232 \mathrm{e}-04$

Table: Maximum error results for the three demonstration problems.

Error Comparison Using Nested Procedure as Primer

Figure: $\log _{10}$ of maximum error. Orange points indicate use of NPA1. Blue points indicate use of nested NPA.

Bryce D. Wilkins ${ }^{1}$ William Nevils ${ }^{2}$ Prarabdha Yonzon ${ }^{2}$ Theodore V. Hromadka II ${ }^{3}$
${ }^{1} \mathrm{CMU} \quad{ }^{2,3}$ USMA

Flow Nets and Other Outcomes

Figure: (Top Left) approximation near obstacle. (Bottom Left) absolute error evaluated on boundary. (Above) approximation near the right stagnation point.

Next Generation

Currently under development...

Figure: The latest NPA allows for variable candidate node density with increased node density in possible areas of interest.

Questions

