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1 Introduction

Managing water storage and flow is essential in hydro-meteorology, engineering, floodplain management,

weather forecasting, and water storage reservoir routing studies. Current practices to do this rely on

estimates of precipitation, which are inaccurate. Walsh et. al., attempts to quantify the uncertainty

associated with the Doppler Radar WSR-88D by developing distributions of Doppler Radar values

versus the actual precipitation measurements collected by rain gauges during the prediction timeline.

The authors indicate there is a high degree of uncertainty associated with Doppler radar estimates of

precipitation and that a point estimate prediction may not be appropriate. As a result, appropriate

distributions of the candidates for the gauge precipitation measurements on the ground are built by

Doppler radar estimate bands ranging in width based on number of observations.

Using current rainfall data, which we define as a coupled pair, namely Doppler Radar Estimated Precipitation

(DREP) and Gauge Estimated Precipitation (GEP), it is possible to track storm cells as well as to predict

precipitation quantities in order to asses possible flow runoff and make flow release strategy adjustments

to reduce downstream flood risk. However, due to uncertainties associated with such Radar data-based

analysis, further insight into the flood risk is possible by inclusion of the possible uncertainty with storm

runoff estimates. The paper by Berne et. al., provides a backdrop as to some of the issues currently

encountered in using Doppler Radar for hydrologic studies. Because a modeling relationship is defined in

the transformation of precipitation to runoff process, the uncertainty associated with the Radar estimates

cascades into the runoff estimates, producing distributions of runoff as a function of the distribution of

the Radar estimate of precipitation versus the precipitation gauge readings.

Much work has been done in recent years to quantify the error associated with radar rainfall estimates.

For example Rossa et. al provides a fairly comprehensive review of the progress made in quantifying

the uncertainty associated with observed and forecasted precipitation and the way these uncertainties

propagate in various hydrological models. For a more in-depth analysis we direct the reader to the work

of Ciach et. al. , Villarini et. al., Quintero et. al., and Rico-Ramirez et. al.
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In this paper, we improve upon Walsh et al and extend the analysis further by providing a methodology

to determine the uncertainty associated with Doppler radar estimates of precipitation and then propagate

it in computations of water runoff estimates. After presenting the methodology we run Monte-Carlo type

simulations using the data compiled by Walsh et al to demonstrate the variations in outcomes associated

with the uncertainty.

Some of the main advantages of our methodology include its generality, data-driven nature, ease of

implementation, applicability in a variety of hydrological and hydraulic models, and its usefulness as a

tool in helping the engineering management of reservoirs in decision-making. On the flip side, one possible

draw-back of this methodology is the fact that its accuracy depends on the number of the coupled data

points (DREP, GEP). In other words, the larger the number of data-points, the more reliable and accurate

the outcomes of the methodology, and vice versa. We will elaborate on this point further when we conduct

Monte-Carlo type simulations in Section 3.

The statistical analysis, visualizations, and the code generated as part of this research were all done in

Python. Specifically, some of the packages that we used for statistical analysis were: Pandas, Numpy,

Stats package from SciPy etc.; for visualizations: Matplotlib, Seaborn, JoyPy etc.

The preliminary results of this paper were presented at the ASFPM and AWRA conferences.

2 Methodology

In this section we present an algorithm which, in a probabilistic sense, quantifies the uncertainty associated

with radar precipitation estimates and the propagation of such uncertainties in various hydorlogical and

hydraulic models for flood forecasting. We will refer to this algorithm as the HBWS algorithm, after the

authors.

Step 0: Data Pre-processing. We standardize each Doppler Radar estimate with associated rain gauge

values, that reflect the actual precipitation collected, to have a mean of zero and a standard deviation of 1.

We denote this coupled pair of (DREP, GEP) as (D,G). We then create a string, which mimics a Doppler

Radar prediction over time, comprised of K DREP measurements, {ai}Ki=1, in standard deviations.

Step 1: Probability Density Functions. Let XG and XD denote the random variables for G and D,

respectively, and let us denote their joint probability density function by fXG ,XD (g, d). For each ai and a

given discretization scale ε > 0 we, formally, define the desired family of conditional probability density

functions, (fai,ε)ε>0, by

fai,ε(g)
def
= fXG (g|XD ∈ Aai,ε)

where Aai,ε = [ai − ε, ai + ε]. One should think of the fai,ε as the probability density function for the

subset of G whose D counterparts belong in the interval Aai,ε.
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Assuming finite data sets, the ε is necessary, as otherwise the domain of fai,ε=0 may be empty or lack

sufficient entries, which is problematic. Ideally ε is minimized for each fai,ε.

Step 2: Kernel Density Estimators. Let f̂ai,ε denote an estimator of the probability density function fai,ε

defined in Step 1, and let {gk}ni

k=1, be such that (dk, gk) ∈ (D ∩Aai,ε,G), for k = 1, . . . , ni, where ni is

maximal. Then

f̂ai,ε(g)
def
=

1

nih
√

2π

ni∑
k=1

e
−
(

g−gk√
2h

)2

,

where h > 0 is some appropriately chosen smoothing parameter. For a more elaborate discussion on

kernel density estimates you may see [?].

Step 3: Distributions. For each ai, the distribution of the probable daily gauge precipitation outcome

readings, denoted by Vai , is the one resulting from the kernel density estimate, f̂ai,ε, in Step 2.

Step 4: GEP Realizations. For each ai, the set of probable candidates for daily gauge precipitation

readings on the ground, denoted by Bi, is obtained via randomly sampling from the distribution Vai ,

constructed in Step 3. Specifically, Bi = (Ojai)
N
j=1, where each of these N randomly sampled outcomes,

denoted by Ojai , is a candidate for an estimate of the gauge precipitation measurement on the ground

corresponding to ai.

Step 5: Strings of GEP realizations. To obtain strings of probable candidates for the gauge precipitation

measurements on the ground we iteratively select an element from each Bi, and cast them as such in a

new list. We then obtain strings of the form C(j) def
=
(
Oja1 ,O

j
a2 , . . . ,O

j
aK

)
, where each C(j) represents a

probable outcome for the gauge precipitation reading on the ground corresponding to the string of DREP

measurements {a1, a2, . . . , aK}.

Step 6: Application Models. We cascade C(j) into various application models, such as rainfall-runoff

models, water conservation, soil-strength analysis etc.

In this paper, we will focus on the rainfall-runoff model, leaving the treatment of other types of models

for future projects.

3 Practical Simulations

Using the same collection of paired data, (D,G), as in Walsh et al we will run a Monte-Carlo type

simulation demonstrating the practical use of the HBWS algorithm to the rainfall-runoff model. To our

knowledge, this procedure provides a novel way to account for the propagated uncertainty associated

with the radar estimates of precipitation in runoff estimates.

For demonstration purposes, for the rest of this paper, we will use the following string of K = 13,
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arbitrarily chosen, daily DREP measurements, in standard deviations,

I def
= {−0.3, 0.1, 0.4, 0.75, 1, 1.4, 1.9, 2.1, 2.3, 2.65, 3.0, 3.25, 3.8}. (1)

We use ε = 0.125, which is minimized.

3.1 Distributions For GEP Measurements

Applying Steps 0 through 3 from the HBWS algorithm, we build the distributions for the gauge precipitation

estimates corresponding to each of the DREP reading in (1). These distributions are displayed in Figure

1 below.

Figure 1: Distributions for GEP measurements (in standard deviations)

The computational results stemming out of this methodology may depend heavily upon choices made

for the discretization scale, time scale, and other measured Doppler-Radar attributes. For illustration

purposes, we conduct a visual comparison of a few GEP distributions built with different discretization

scales. Specifically, for the following subset of I values {−0.3, 1.4, 2.3, 3.25, 3.8} we build a corresponding

GEP kernel density estimate (see Step 2) for ε = [0.05, 0.1, 0.125, 0.25], respectively. These are illustrated

in Figures 2 through 6 below.
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Figure 2: GEP marginal distributions for a DREP reading of -0.3 with different discretization scales

Figure 3: GEP marginal distributions for a DREP reading of 1.4 with different discretization scales

Figure 4: GEP marginal distributions for a DREP reading of 2.3 with different discretization scales

Figure 5: GEP marginal distributions for a DREP reading of 3.25 with different discretization scales

Figure 6: GEP marginal distributions for a DREP reading of 3.8 with different discretization scales
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3.2 GEP realizations over thirteen Doppler-Radar daily measurements

Applying Steps 4 and 5 from the HBWS algorithm, for each DREP reading in I, we generate N = 50

strings of GEP realizations. Then, we compute the 25th, 50th and 85th percentiles for each of these

generated probable outcomes of gauge precipitation measurements. Figure 7 gives a visual representation

of these results.

Figure 7: N=50 samples – corresponding to the 50 estimated GEP Realizations, each tracked over 13
Doppler-Radar daily measurements

For example, focusing on the Doppler Radar daily measurement of 0.1, these calculations infer that 85%

of the probable outcomes of precipitation will be below 0.604, and similarly 50% will be below −0.047

while 25% will be below −0.306, bearing in mind that all these measurements are in terms of standard

deviations. The complete list of percentiles is given in Table 1 below.

Table 1: Percentiles for the GEP realizations of the daily Doppler-Radar measurements (StDev)

3.3 Distributions of the Maximal Values of GEP Realizations

Of particular interest are rare weather events such as continuous, multi-day, rain storms, and even

hurricanes as they directly affect areas susceptible to flooding and impact populated areas. Hence, it

is necessary to understand the distribution of maximal precipitation estimates. These distributions can

be highly sensitive to a particular string of daily Doppler-Radar measurements, e.g. one day of intense

rain amidst a drought, and as such an effective method is to build these distributions for each specific

string of daily measurements in the following manner.
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First, applying Step 5 from the HBWS algorithm we generateN strings of probable outcomes of precipitation

estimates on the ground. Second, from each C(j), we collect the maximal value. Finally, using a similar

procedure as in Steps 2 and 3 of the HBWS algorithm we build the desired distribution for the entire

collection of these maximal values.

For N = 1000 and 10000, the distributions are depicted visually in Figures 8 and 9, respectively.

Figure 8: Distribution for N=1000 estimated maximal
GEP realizations in standard deviations

Figure 9: Distribution for N=10000 estimated maximal
GEP realizations in standard deviations

3.4 Application: Runoff Model

Utilizing the generated strings of GEP realizations in Step 5 of the HBWS algorithm, example applications

include determining the approximate amount of direct runoff from a rainfall event in a particular area.

Runoff is of particular interest in urban populations or areas at risk for flooding.

To calculate the runoff amount, denoted by Q, we first convert each of the generated GEP realizations

from standard deviations to inches via the equation xi = (szi + x̄)/25.4, where the mean x̄ = 23.88 and

sample standard deviation s = 28.19. For this application, we calculate the runoff via the well-known

formula ,

Q =
(P − 0.2S)2

(P + 0.8S)
(2)

where P is the rainfall in inches, S = 1000
CN −10 is the potential maximum soil retention after runoff begins,

and CN is the runoff curve number. In this simulation, we have chosen a CN = 60 as it represents a

more average value for natural soil conditions.

Figures 10 and 11 depict possible runoff estimates calculated from N = 1 and N = 50 generated string(s)

of the GEP realizations, respectively.
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Figure 10: Runoff vs one string of GEP realizations

Figure 11: Runoff vs GEP realizations for N=50 generated strings

The graph in Figure 12 depicts runoff estimates, in inches, over the thirteen Doppler-Radar daily
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Figure 12: Runoff Estimates for N=50 simulations over 13 Doppler-Radar daily measurements in inches

measurements I. Note that the parabolic nature of the graphs is consistent with the Peak Discharge

Calculator’s formula for runoff Q and the scale difference between axes.
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4 Conclusions and Further Research

There is a high degree of uncertainty associated with Doppler-Radar predictions. This uncertainty

cascades into any follow-up application model, such as rainfall-runoff model, soil-strength analysis, water

conservation analysis etc. For this reason, it is of significant importance to quantify and incorporate this

uncertainty in Doppler-Radar predictions into any of these follow-up applications and models.

The goal of this research is to provide a possible methodology which will accomplish precisely this task;

that is, it attempts to quantify and most importantly incorporate the uncertainty associated with Doppler-

Radar based-analysis into many follow-up applications and models of interest. The general methodology

is described in Section 2 and a practical, concrete, simulation is conducted using the current published

data of Doppler-Radar estimated precipitation versus Gauge estimated precipitation.

Further considerations such as quantifying and possibly reducing the uncertainty associated with the

Doppler-Radar measurements of precipitation that results specifically from the variable z−R relationship,

mutual dependency in daily outcome distributions, applications of this methodology to specific severe

weather events etc., are areas of future and ongoing research.
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Abstract

Applications that rely on Doppler radar estimates of precipitation include hydro-meteorology, engineering, floodplain

management, and weather forecasting. In this article we provide a methodology to quantify, in a probabilistic sense,

the uncertainty associated with Doppler radar estimates of precipitation and the propagation of such uncertainties in the

rainfall-runoff model. Through multiple Monte-Carlo type simulations we demonstrate the variation in these calculations

related to the uncertainty of estimation and a practical way in which the engineering management of reservoirs may use

this methodology to assist them in decision-making.

Keywords: Radar Precipitation Uncertainty, Rainfall-Runoff Model, Monte-Carlo Simulations
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