# Advancement in Node Positioning Algorithms for the Complex Variable Boundary Element Method

### 1LT Bryce D. Wilkins<sup>1</sup>, Professor Theodore V. Hromadka II<sup>2</sup>

<sup>1</sup>Carnegie Mellon University <sup>2</sup>Distinguished Professor, United States Military Academy

bdwilkins95@gmail.com

November 20, 2020

1LT Bryce D. Wilkins<sup>1</sup>, Professor Theodore V. Hromadka II<sup>2</sup> Advancement in Node Positioning Algorithms for the CVBEM

| Overview of CVBEM Methodology |        |        | Final Thoughts - |
|-------------------------------|--------|--------|------------------|
| 0000                          | 000000 | 000000 | 000              |

# Overview of CVBEM Methodology

1LT Bryce D. Wilkins<sup>1</sup>, Professor Theodore V. Hromadka  $II^2$ Advancement in Node Positioning Algorithms for the CVBEM

### The General CVBEM Approximation Function

The CVBEM approximation function is a linear combination of complex variable functions that are analytic within a given problem domain, Ω:

$$\hat{\omega}(z) = \sum_{j=1}^{n} c_j g_j(z), \quad z \in \Omega,$$
 (1)

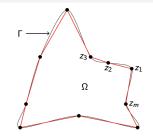
where

c<sub>j</sub> = α<sub>j</sub> + iβ<sub>j</sub> are complex coefficients (note: 2 real coefficients),

•  $g_j(z)$  are analytic complex variable basis functions,

 n is the number of basis functions being used in the approximation

Each term in the approximation function corresponds to one node and two collocation points.

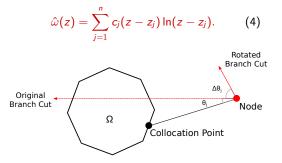

### **Problem Formulation**

The Cauchy integral formula:

$$\omega(z) = \frac{1}{2\pi i} \oint_{\Gamma} \frac{\omega(\zeta) d\zeta}{\zeta - z}.$$
 (2)

Integration of (2) results in the following sum, which is known as the CVBEM approximation function:

$$\hat{\omega}(z) = \sum_{j=1}^{n} c_j(z - z_j) \ln(z - z_j).$$
 (3)




**Figure:** The boundary is discretized using a set of interpolation points. The interpolation points can be connected using straight line segments to create a polygonal representation.

### The CVBEM Modeling Procedure

The CVBEM approximation function is as follows:

- The points z<sub>j</sub> are the branch points of the logarithm (with branch cuts rotated) and are often referred to as computational nodes.
- The CVBEM can be viewed as a procedure for generating basis functions, such as in (4).
- The generated basis functions are used as inputs for the NPAs.



**Figure:** Rotation of a typical branch cut. The branch point of the basis function corresponds to a node for the NPA.

| Overview of CVBEM Methodology | Advancements in Node Positioning Algorithms |        | Final Thoughts - |
|-------------------------------|---------------------------------------------|--------|------------------|
| 0000                          | 00000                                       | 000000 | 000              |

# Advancements in Node Positioning Algorithms

1LT Bryce D. Wilkins<sup>1</sup>, Professor Theodore V. Hromadka  $II^2$ Advancement in Node Positioning Algorithms for the CVBEM

| Overview of CVBEM Methodology | Advancements in Node Positioning Algorithms | Final Thoughts - |
|-------------------------------|---------------------------------------------|------------------|
|                               | 00000                                       |                  |
|                               |                                             |                  |

Hromadka II, T.V. & Guymon, G.L., A Complex Variable Boundary Element Method: Development. *International Journal for Numerical Methods in Engineering*, **20**, pp. 25-37, 1984.

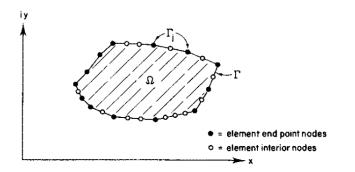
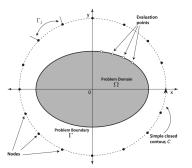



Figure: Originally, nodes were located on the problem boundary.

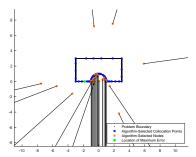

 1LT Bryce D. Wilkins<sup>1</sup>, Professor Theodore V. Hromadka II<sup>2</sup>
 <sup>1</sup>CMU
 <sup>2</sup> Dis

 Advancement in Node Positioning Algorithms for the CVBEM

| Overview of CVBEM Methodology | Advancements in Node Positioning Algorithms | Final Thoughts - |
|-------------------------------|---------------------------------------------|------------------|
|                               | 00000                                       |                  |

### **NPA0.5**

Johnson, A.N. & Hromadka II, T.V., Modeling mixed boundary conditions in a Hilbert space with the complex variable boundary element method (CVBEM). *MethodsX*, **2**, pp. 292-305, 2015.

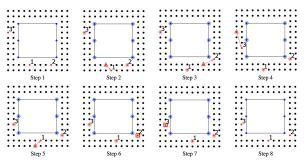



**Figure:** Next, nodes were located in a geometric pattern in the exterior of  $\Omega \cup \partial \Omega$ .

1LT Bryce D. Wilkins<sup>1</sup>, Professor Theodore V. Hromadka II<sup>2</sup> Advancement in Node Positioning Algorithms for the CVBEM

| Overview of CVBEM Methodology | Advancements in Node Positioning Algorithms | Example Problem and Results | Final Thoughts - |
|-------------------------------|---------------------------------------------|-----------------------------|------------------|
| 0000                          | 000000                                      | 000000                      | 000              |

Demoes, N.J., Bann, G.T., Wilkins, B.D., Grubaugh, K.E. & Hromadka II, T.V., Optimization Algorithm for Locating Computational Nodal Points in the Method of Fundamental Solutions to Improve Computational Accuracy in Geosciences Modeling. *The Professional Geologist*, pp. 6-12, 2019.

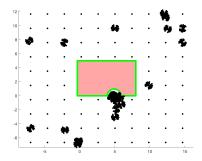



**Figure:** Nodes and collocation points are selected so as to decrease error in fitting boundary conditions.

1LT Bryce D. Wilkins<sup>1</sup>, Professor Theodore V. Hromadka  $II^2$ Advancement in Node Positioning Algorithms for the CVBEM

| Overview of CVBEM Methodology | Advancements in Node Positioning Algorithms |        | Final Thoughts - |
|-------------------------------|---------------------------------------------|--------|------------------|
| 0000                          | 000000                                      | 000000 | 000              |

Wilkins, B.D., Hromadka II, T.V. & McInvale, J., Comparison of Two Algorithms for Locating Nodes in the Complex Variable Boundary Element Method (CVBEM). *International Journal of Computational Methods and Experimental Measurements*, in press.




**Figure:** A refinement procedure is added, which allows for the re-location of previously located nodes.

1LT Bryce D. Wilkins<sup>1</sup>, Professor Theodore V. Hromadka II<sup>2</sup> <sup>1</sup>CMU <sup>2</sup> Distinguished Professor, USMA Advancement in Node Positioning Algorithms for the CVBEM

| Overview of CVBEM Methodology | Advancements in Node Positioning Algorithms | Final Thoughts - |
|-------------------------------|---------------------------------------------|------------------|
| 0000                          | 000000                                      |                  |

#### Under current development...



**Figure:** The latest NPA allows for variable candidate node density with increased node density in possible areas of interest.

| Overview of CVBEM Methodology | Advancements in Node Positioning Algorithms | Example Problem and Results | Final Thoughts - |
|-------------------------------|---------------------------------------------|-----------------------------|------------------|
|                               |                                             | •00000                      |                  |

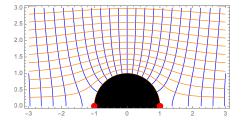
# Example Problem and Results

1LT Bryce D. Wilkins<sup>1</sup>, Professor Theodore V. Hromadka  $II^2$ Advancement in Node Positioning Algorithms for the CVBEM

### Example Problem Details

| Problem Domain:      | $\Omega = \left\{ (x, y) : -3 \le x \le 3, \ 0 \le y \le 3, \right\}$ |
|----------------------|-----------------------------------------------------------------------|
|                      | and $x^2 + y^2 \ge 1$                                                 |
| Governing PDE:       | $ abla^2\psi=0$                                                       |
| Boundary Conditions: | $\psi(x,y) = \Im[z + \frac{1}{z}],  (x,y) \in \partial \Omega$        |
| Number of Candidate  |                                                                       |
| Computational Nodes: | 1,000                                                                 |
| Number of Candidate  |                                                                       |
| Collocation Points:  | 500                                                                   |

**Table:** Potential Flow Around a Cylindrical Obstacle - ProblemDescription


1LT Bryce D. Wilkins<sup>1</sup>, Professor Theodore V. Hromadka II<sup>2</sup> Advancement in Node Positioning Algorithms for the CVBEM

## Analytic Solution

The example problem considers potential flow around a cylinder with the analytic solution given by:

 $\omega(z)=z+\frac{1}{z}$ 

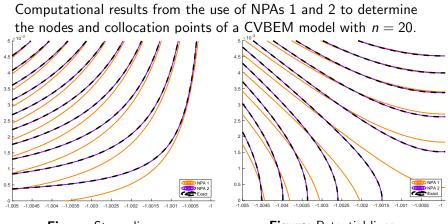
- The flow regime approaches potential flow in a 90-degree bend at the stagnation points.
- The stagnation points are difficult to model computationally because of the extreme curvature of the flow regime.



**Figure:** Analytic solution used for comparison between NPA1 and NPA2. The stagnation points are indicated by red points at (-1, 0) and (1, 0).

1LT Bryce D. Wilkins<sup>1</sup>, Professor Theodore V. Hromadka  $II^2$ Advancement in Node Positioning Algorithms for the CVBEM

## NPA Comparisons



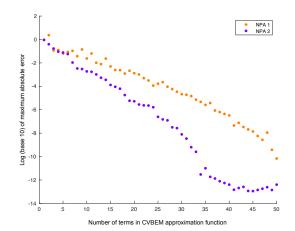


Figure: Streamlines.

Figure: Potential lines.

1LT Bryce D. Wilkins<sup>1</sup>, Professor Theodore V. Hromadka  $\rm II^2$  Advancement in Node Positioning Algorithms for the CVBEM

### Error Results

Figure: Maximum absolute error of CVBEM models resulting from the use of NPAs 1 and 2 as each new node is added up to a total of 50 nodes. After n = 10, it is clear that the NPA2 approximation is several orders of magnitude more accurate than the NPA1 approximation.



1LT Bryce D. Wilkins<sup>1</sup>, Professor Theodore V. Hromadka II<sup>2</sup> Advancement in Node Positioning Algorithms for the CVBEM

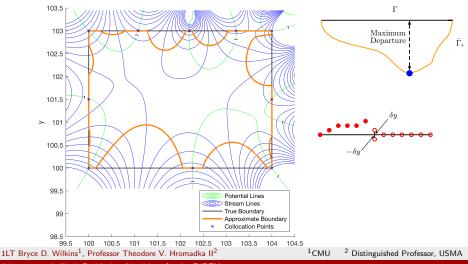
### Time Results

| Number    | Number | Unrefined Method (NPA1): |              |  |
|-----------|--------|--------------------------|--------------|--|
| of Basis  | of     | Maximum                  | Time Elapsed |  |
| Functions | d.o.f. | Error                    | (sec)        |  |
| 10        | 20     | 2.376217e-02             | 2.600493     |  |
| 20        | 40     | 1.324917e-03             | 5.413931     |  |
| 30        | 60     | 2.123033e-05             | 10.021206    |  |
| 40        | 80     | 3.277547e-07             | 11.846832    |  |
| 50        | 100    | 6.828804e-11             | 16.865822    |  |
| Number    | Number | Refined Method (NPA2):   |              |  |
| of Basis  | of     | Maximum                  | Time Elapsed |  |
| Functions | d.o.f. | Error                    | (sec)        |  |
| 10        | 20     | 6.731285e-03             | 26.847856    |  |
| 20        | 40     | 1.639780e-05             | 101.625993   |  |
| 30        | 60     | 3.783824e-09             | 199.087752   |  |
| 40        | 80     | 1.816325e-13             | 408.392388   |  |
| 50        | 100    | 1.163514e-13             | 672.789040   |  |

Table:Maximumerror and timeelapsed forvariousCVBEMmodels of aDirichletboundaryvalue problem.

1LT Bryce D. Wilkins<sup>1</sup>, Professor Theodore V. Hromadka II<sup>2</sup>

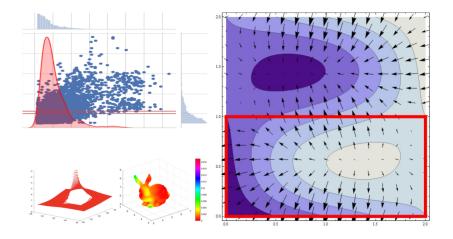
<sup>1</sup>CMU <sup>2</sup> Distinguished Professor, USMA


Advancement in Node Positioning Algorithms for the CVBEM

| Overview of CVBEM Methodology |  | Final Thoughts - |
|-------------------------------|--|------------------|
|                               |  | 000              |

# Final Thoughts - The Approximate Boundary Method

1LT Bryce D. Wilkins<sup>1</sup>, Professor Theodore V. Hromadka  $II^2$ Advancement in Node Positioning Algorithms for the CVBEM


### The Approximate Boundary Method



Advancement in Node Positioning Algorithms for the CVBEM

| Overview of CVBEM Methodology |        |        | Final Thoughts - |
|-------------------------------|--------|--------|------------------|
| 0000                          | 000000 | 000000 | 000              |

### Questions



1LT Bryce D. Wilkins<sup>1</sup>, Professor Theodore V. Hromadka  $II^2$ Advancement in Node Positioning Algorithms for the CVBEM