
Modeling the Flow Around a Constrained Circular Obstruction
Benjamin M. Siegel1, Bryce D. Wilkins2, T.V. Hromadka II3

1 United States Military Academy 2 Carnegie Mellon University 3 Distinguished Professor, United States Military Academy

Introduction

Recent research considers comparing the accuracy of modeling PDEs with approaches such as the Finite El-
ement Method (FEM) and the Complex Variable Boundary Element Method (CVBEM). To assess the per-
formance of each approach, this project uses an application of groundwater flow as a proof of concept. It is
assumed that a constrained circular obstruction has formed a barrier to groundwater flow, as indicated by the
black circle in Figure 1. The figure also shows examples of potential contamination source points (blue tri-
angles). One source point is a Leaking Underground Storage Tank (LUST), as indicated by the red triangle.
The green dot represents the hypothetical location where a contaminant has been detected. The purpose of this
study is to determine the source tank of the detected contaminant by modeling the groundwater flow regime
and back-tracing the associated streamline that goes through the location of detection.
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Figure 1: Analytic solution of the groundwater flow situation. Potential isocontours are shown as orange lines, and stream isocon-
tours (stream lines) are shown as blue lines. The analytic solution is given by ω(z) = π coth(πz ), as stated in [1].

CVBEM Methodology

The CVBEM is a numerical solver for PDEs of the Laplace and related types that is derived from numerical
integration of the Cauchy integral equation:

f (z) =
1

2πi

∮
Γ

f (ζ)dζ

ζ − z

• The area of interest is assumed to be simply connected, with a simple closed boundary, denoted Γ.

• The boundary is discretized using a set of interpolation points.

• When straight line segments are used to discretize the boundary of the problem domain, the numerical
integration of the Cauchy integral formula results in the following sum, which is known as the CVBEM
approximation function [2]:

ω̂(z) =

n∑
j=1

cj(z − zj) ln(z − zj)

The points zj are branch points of the basis functions and are referred to as modeling or computational nodes.

Node Positioning Algorithms

Originally, the CVBEM placed modeling nodes, zj, in a regular pattern around the problem domain without
concern for finding the locations that provide minimal or reduced computational error. This method is the
simplest and carries the least computational burden, but it is also the least accurate.

Figure 2: An early CVBEM approximation where computational nodes (black) are simply arranged in a circle around the problem
domain and collocation points (red) are uniformly spaced along the problem boundary. [3]

• The improvement to the un-optimized model is the Node Positioning Algorithm 1 (NPA1). The algorithm be-
gins by creating an initial distribution of candidate node positions and candidate collocation points. Because
of the maximum modulus principle, we know the maximum error of the CVBEM approximation function
occurs on the problem boundary. Consequently, as each node is added to the model, the algorithm places
two collocation points on the problem boundary where the two greatest local maxima of the error function
occur, and then evaluates each candidate node to find the CVBEM approximation function of least error.

• The second improvement is the Node Positioning Algorithm 2 (NPA2). NPA2 adds a refinement algorithm
to the CVBEM procedure, which is utilized as each new node is added, as well as after all the nodes have
been selected. The refinement procedure has a monotonically non-increasing effect on the maximum error
of the approximation function because at each application of refinement, there is either no change in error
and the current model is kept, or a node is exchanged to a different location, resulting in decreased error.
Research shows the NPA2 can improve accuracy by at least an order of magnitude—and up to four orders of
magnitude—when the degrees of freedom are greater than ten [4].

FEM Methodology

The FEM is a popular domain discretization method that is often used as a modeling procedure instead of
the CVBEM. This technique begins by creating a mesh with modeling nodes and elements to discretize the
problem domain. This project examined two trials with the FEM: one with a simple mesh and one with a much
more refined mesh:

0 2 4
-1

0

1

2

3

4

5

6

7

Figure 3: Trial 1 FEM mesh Figure 4: Trial 2 FEM mesh

Notice the FEM mesh in Figure 4 is much more refined. Since refined meshes tend to produce more accurate
FEM approximations, we will use this mesh in order to graphically compare the FEM output to the analytic
and CVBEM outputs. We will compare the modeling outputs of the various approximation methods at several
points of interest within the problem domain.

Results
CVBEM Problem Details and Results
Parameters Trial 1 Trial 2
Nodes in model: 20 40
Length: 4 4
Height: 6 6
Number of candidate nodes
for optimization algorithm: 500 500
Number of candidate collocation
points for optimization algorithm: 1000 1000

Table 1: Parameter Details

Method Trial 1 Trial 2
NPA1: 6.26 × 10−4 5.45 × 10−8

NPA2: 3.58 × 10−6 7.80 × 10−9

Table 2: A comparison of the maxi-
mum absolute error between the NPA1
and NPA2. As expected, a higher-node
model performs better than a lower-
node model, and the NPA2 performs
better than the NPA1.

CVBEM Graphical Results
The following figures compare the analytic solution to a 40-node CVBEM approximation in the domain.
In these figures, the CVBEM isocontour outcomes overlap and are seen as dashed red and black lines.
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Figure 5: Potential Lines
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Figure 6: Streamlines
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Figure 7: Maximum error of each CVBEM model of n
nodes up to n = 40 with the NPA2.
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Figure 8: Absolute error on the boundary

FEM Graphical Results
The following figures compare the analytic solution to an FEM approximation in the domain. In these figures,
the dashed black lines represent the analytic solution while the solid purple lines represent the FEM approxi-
mation. Notice the FEM isocontours are much less accurate when plotting streamlines.
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Figure 9: Potential Lines Figure 10: Streamlines

Comparison Between CVBEM and FEM Approximations
The following figures demonstrate the results of back-tracing the contamination using both the CVBEM and
FEM approximations. In this situation, the dashed black lines represent the analytic solution, the red lines in
Figure 11 represent the CVBEM approximation, and the purple lines in Figure 12 represent the FEM approx-
imation. Notice the FEM model in Figure 12 would incorrectly predict the contamination source, as depicted
by the magenta line.
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Figure 11: CVBEM Figure 12: FEM

Conclusions
In this poster, we compared the outcomes of two numerical methods; namely, the coupled CVBEM/NPA2
methodology and the finite element method, to solve an important benchmark problem related to groundwa-
ter flow and contamination source detection. The CVBEM produced very good approximations of a typical
groundwater flow problem such as potential flow over a constrained circular obstruction. In fact, the CVBEM
demonstrated 7.80 × 10−9 absolute maximum error for a 40 node model with the NPA2. On the other hand, al-
though the potential contours of the FEM model compare well to the potential contours of the analytic solution,
the FEM model does not generate similarly accurate streamlines, which results in a departure of the trajectory
of the approximate streamlines from the target streamlines as seen in Figure 12. In this case study, this causes
the wrong source point to be identified by the FEM model. However, the CVBEM correctly identifies the
LUST, which is the source of the detected contamination.
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