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Introduction

Figure 1: Analytic solution of the groundwater flow. Po-
tential isocontours are depicted as orange lines, and the
stream isocontours are shown as blue lines. The analytic
solution is given by ω(z) = z+ 1

z + i
3π
4 log(z), as stated in

[1].

The Computational Engineering Mathematics pro-
gram at the United States Military Academy has fo-
cused on mesh reduction numerical methods, such
as the Complex Variable Boundary Element Method
(CVBEM), for solving partial differential equations
(PDEs) of the Laplace and related types. This
poster focuses on performance differences between
this method and domain meshing techniques such as
the Finite Element Method (FEM).

To understand an instance of this difference, this
research models the groundwater flow around a free
circular obstruction. For this specific problem, it is
assumed that geologic faults formed a barrier to the
groundwater flow, as indicated by the black circle in
Figure 1. Also shown in this figure are clusters of
potential contamination source points. One of the
source points is a Leaking Underground Storage Tank
(LUST). The green dot represents the hypothetical location where a contaminant has been detected. The pur-
pose of this study is to determine the source tank of the detected contaminant by modeling the groundwater flow
regime and back-tracing the associated streamline that goes through the location of detection. This research
uses the CVBEM and FEM to identify the source of the contamination by modeling the stream function and
tracing the relevant streamline from the point of detection back to one of the candidate source points.

CVBEM Methodology: Cauchy-Riemann Equations and the CVBEM
Approximation Function
The CVBEM approximation function consists of a linear combination of analytic complex variable functions:

ω̂(z) =
N∑
j=1

cjgj(z), (1)

where cj ∈ C denotes the complex coefficients; gj(z) denotes the analytic complex variable basis functions;
and N is the number of basis functions being used in the approximation function.

NOTE: There are 2N degrees of freedom since each complex coefficient contains an unknown real and
imaginary part, which will be determined in the modeling process.

Since the CVBEM approximation function is a linear combination of analytic complex variable functions, the
real and imaginary parts of the approximation function are related by the Cauchy-Riemann equations:
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From Equation (2), it follows that φ and ψ are harmonic equations, which satisfy the Laplace equation:
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A similar process can be used to show that ψ is also a harmonic function.

Other Important Basis Functions
This work uses basis functions obtained from numerical
integration of the Cauchy integral equation, as discussed
in [2]:

ω̂(z) =

N∑
j=1

cj(z − zj) ln
(
z − zj

)
(4)

Other basis functions have been examined in the recent
paper [5] and can be seen in the box on the right. These
basis functions are complex monomials, a Laurent series
expansion, and simple poles, as seen in Equations (5), (6),
and (7), respectively.

ω̂(z) =

N∑
j=1

cj(z − z0)j, z0 ∈ C (5)

ω̂(z) =
N∑
j=1

cj
1

(z − z1)j
, z1 ∈ C (6)

ω̂(z) =
N∑
j=1

cj
1

z − zj
(7)

Node Positioning Algorithm and Refinement Procedure
The efficacy of the CVBEM is improved though the use of Node Positioning Algorithms, which are coupled
with the CVBEM methodology. The Node Positioning Algorithms of interest can be broadly described in the
following six steps:

1. Candidate nodes and candidate collocation points are generated, and the algorithm begins with two selected
collocation points.

2. Each candidate node is evaluated to determine the node that corresponds to the CVBEM model of least error.
The node with the least maximum error is chosen as the next node for the model.

3. Error is then re-evaluated on the boundary. Two local maxima of the error function are identified, and new
collocation points are located at those points, respectively.

4. Steps 2 and 3 are repeated until the required numbers of nodes and collocation points have been selected.

5. Afterwards, each node is re-examined to see if a selection from the remaining candidate nodes would result
in a model with a smaller maximum error. If the error is smaller, this node replaces the current node, and
the method proceeds to re-evaluate the next node. If the maximum error is not smaller, then the current
node is kept, and the next node is evaluated. This step is known as the refinement procedure and is what
distinguishes NPA2 from NPA1.

6. This refinement continues for a set number of iterations or until the maximum error no longer decreases.
Also, note that the refinement procedure can be applied after the selection of each new node in Step 2.

FEM Methodology
The FEM is a common numerical method for solving PDEs that uses a domain discretization consisting of
modeling elements and nodes. The figures below show an example of a coarse mesh and a refined mesh.
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Figure 2: Trial 1 FEM mesh
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Figure 3: Trial 2 FEM mesh

Refined meshes produce more accurate approximations. This project used the more refined mesh to compare
the accuracy of the FEM to the CVBEM.

Results
CVBEM Problem Details and Results

Parameters Trial 1 Trial 2
Nodes in model: 20 40
Problem Domain Length: 4 4
Problem Domain Height: 8 8
Number of candidate nodes
for optimization algorithm: 1000 500
Number of candidate collocation
points for optimization algorithm: 2000 1000

Table 1: The Trial 2 parameters were used to produce the CVBEM graphical
results displayed below.

Method Trial 1 Trial 2
NPA1: 3.78× 10−4 1.76× 10−9

NPA2: 8.63× 10−6 1.73× 10−10

Table 2: Maximum absolute error com-
parison for CVBEM models obtained
using NPA1 and NPA 2.

Problem Geometry
Symmetry of the problem geometry allows us to justify modeling only the right half of the area of interest, as
shown in Figures 4 and 5. Then, these modeling outcomes are reflected about the vertical axis to obtain the
approximation in the entire area of interest.
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Figure 4: Geometry of problem domain. Boundary condi-
tions are applied at the collocation points. For visualization
purposes, only 7% of the candidate collocation points are
shown.
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Figure 5: Locations of algorithm-selected collocation
points and nodes. The algorithm-selected nodes tend to ac-
cumulate in the cavity of the problem domain.

CVBEM Graphical Results
The following figures compare the analytic solution to the CVBEM approximation.
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Figure 6: Potential Lines
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Figure 7: Streamlines

FEM Graphical Results
The following figures compare the analytic solution to the FEM approximation. The figures reveal the FEM
streamlines are less accurate than the streamlines produced by the CVBEM.
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Figure 8: Potential Lines
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Figure 9: Streamlines

Comparison Between Methods
In this section, we examine the LUST predictions produced by both the CVBEM and FEM methodologies.
As shown in Figure 11, the FEM method predicts the incorrect source, while Figure 10 shows the CVBEM
predicts the correct source.
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Figure 10: LUST prediction using CVBEM methodology.
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Figure 11: LUST prediction using FEM methodology.

Conclusions
In this research, we analyzed the CVBEM and FEM methods in modeling the flow around a free circular ob-
struction. We discussed the formulation of the CVBEM approximation function and explained the general idea
of the FEM. While comparing the isocontours, we found both methods produced similar isocontours to the
analytic ones. However, with more analysis, we found that the FEM model incorrectly identified the source of
the contamination. On the other hand, we found that the CVBEM streamlines could be back-traced to correctly
identify the source of the contamination.
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