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Chapter

Diffusion Hydrodynamic Model
Theoretical Development
Theodore V. Hromadka II and Chung-Cheng Yen

Abstract

In this chapter, the governing flow equations for one- and two-dimensional
unsteady flows that are solved in the diffusion hydrodynamic model (DHM) are
presented along with the relevant assumptions. A step-by-step derivation of the
simplified equations which are based on continuity and momentum principles are
detailed. Characteristic features of the explicit DHM numerical algorithm are
discussed.

Keywords: unsteady flow, conservation of mass, finite difference, explicit scheme,
flow equations

1. Introduction

Many flow phenomena of great engineering importance are unsteady in
characters and cannot be reduced to a steady flow by changing the viewpoint of the
observer. A complete theory of unsteady flow is therefore required and will be
reviewed in this section. The equations of motion are not solvable in the most
general case, but approximations and numerical methods can be developed which
yield solutions of satisfactory accuracy.

2. Review of governing equations

The law of continuity for unsteady flow may be established by considering the
conservation of mass in an infinitesimal space between two channel sections
(Figure 1). In unsteady flow, the discharge, Q, changes with distance, x, at a rate
∂Q
∂x , and the depth, y, changes with time, t, at a rate ∂y

∂t. The change in discharge

volume through space dx in the time dt is ∂Q
∂x

! "

dxdt. The corresponding change in

channel storage in space is Tdx ∂y
∂t

# $

dt ¼ dx ∂A
∂t

! "

dt in which A ¼ Ty. Because water is

incompressible, the net change in discharge plus the change in storage should be
zero, that is

∂Q

∂x

% &

dxdtþ Tdx
∂y

∂t

% &

dt ¼
∂Q

∂x

% &

dxdtþ dx
∂A

∂t

% &

dt ¼ 0
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Simplifying

∂Q

∂x
þ T

∂y

∂t
¼ 0 (1)

or

∂Q

∂x
þ
∂A

∂t
¼ 0 (2)

At a given section, Q = VA; thus Eq. (1) becomes

∂ VAð Þ

∂x
þ T

∂y

∂t
¼ 0 (3)

or

A
∂V

∂x
þ V

∂A

∂x
þ T

∂y

∂t
¼ 0 (4)

Because the hydraulic depth D = A/T and ∂A ¼ T∂y, the above equation may be
written as

D
∂V

∂x
þ V

∂y

∂x
þ
∂y

∂t
¼ 0 (5)

The above equations are all forms of the continuity equation for unsteady flow
in open channels. For a rectangular channel or a channel of infinite width, Eq. (1)
may be written as

∂q

∂x
þ
∂y

∂t
¼ 0 (6)

where q is the discharge per unit width.

Figure 1.
Continuity of unsteady flow.

2

A Diffusion Hydrodynamic Model



3. Equation of motion

In a steady, uniform flow, the gradient, dHdx , of the total energy line is equal to

magnitude of the “friction slope” S f ¼ V2= C2R
! "

, where C is the Chezy coefficient
and R is the hydraulic radius. Indeed this statement was in a sense taken as the
definition of Sf; however, in the present context, we have to consider the more
general case in which the flow is nonuniform, and the velocity may be changing in
the downstream direction. The net force, shear force and pressure force, is no
longer zero since the flow is accelerating. Therefore, the equation of motion
becomes

%γAΔh% τ0PΔx ¼ ρAΔx V
∂V

∂x
þ
∂V

∂t

% &

that is

τ0 ¼ %γR
∂h

∂x
þ
V

g

∂V

∂x
þ
1
g

∂V

∂t

% &

%γR
∂H

∂x
þ
1
g

∂V

∂t

% &

(7)

where τ0 is the same shear stress, P is the hydrostatic pressure, h is the depth of
water, Δh is the change of depth of water, γ is the specific weight of the fluid, R is

the mean hydraulic radius, and ρ is the fluid density. Substituting τ0
γR =

V2

C2R
into

Eq. (7), we obtain

∂H

∂x
þ
1
g

∂V

∂t
þ

V2

C2R
¼ 0 (8)

and this equation may be rewritten as

Se þ Sa þ Sf ¼ 0 (9)

where the three terms of Eq. (9) are called the energy slope, the acceleration
slope, and the friction slope, respectively. Figure 2 depicts the simplified
representation of energy in unsteady flow.

By substituting H ¼ V2

2g þ yþ z and the bed slope So ¼ % ∂z
∂x into Eq. (8), we

obtain

∂H

∂x
¼

∂z

∂x
þ

∂y

∂x
þ
V

g

∂V

∂x

¼ %So þ
∂y

∂x
þ
V

g

∂V

∂x

¼ %
1
g

∂V

∂t
% S f

(10)
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Hence Eq. (8) can be rewritten as

ð11Þ

This equation may be applicable to various types of flow as indicated. This
arrangement shows how the nonuniformity and unsteadiness of flows introduce
extra terms into the governing dynamic equation.

4. Diffusion hydrodynamic model

4.1 One-dimensional diffusion hydrodynamic model

The mathematical relationships in a one-dimensional diffusion hydrodynamic
model (DHM) are based upon the flow equations of continuity (2) and momentum
(11) which can be rewritten [1] as

∂Qx

∂x
þ
∂Ax

∂t
¼ 0 (12)

∂Qx

∂t
þ
∂ Qx

2=Ax

! "

∂x
þ gAx

∂H

∂x
þ Sfx

% &

¼ 0 (13)

Figure 2.
Simplified representation of energy in unsteady flow.
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where Qx is the flow rate; x,t are spatial and temporal coordinates, Ax is the flow
area, g is the gravitational acceleration, H is the water surface elevation, and Sfx is a
friction slope. It is assumed that Sfx approximated from Manning’s equation for
steady flow by [1].

Qx ¼
1:486
n

AxR
2=3Sfx

1=2 (14)

where R is the hydraulic radius and n is a flow resistance coefficient which may
be increased to account for other energy losses such as expansions and bend losses.

Letting mx be a momentum quantity defined by

mx ¼
∂Qx

∂t
þ
∂ Qx

2=Ax

! "

∂x

 !

=gAx (15)

then Eq. (13) can be rewritten as

Sfx ¼ %
∂H

∂x
þmx

% &

(16)

In Eq. (15), the subscript x included in mx indicates the directional term. The
expansion of Eq. (13) to two-dimensional case leads directly to the terms (mx, my)
except that now a cross-product of flow velocities is included, increasing the com-
putational effort considerably.

Rewriting Eq. (14) and including Eqs. (15) and (16), the directional flow rate is
computed by

Qx ¼ %Kx
∂H

∂x
þmx

% &

(17)

where Qx indicates a directional term and Kx is a type of conduction parameter
defined by

Kx ¼
1:486
n

AxR
2=3

∂H
∂x þmx

'

'

'

'

1=2
(18)

In Eq. (18), Kx is limited in value by the denominator term being checked for a

smallest allowable magnitude (such as ∂H
∂X þmX

'

'

'

'

1=2
> 10%3).

Substituting the flow rate formulation of Eq. (17) into Eq. (12) gives a diffusion
type of relationship

∂

∂X
KX

∂H

∂X
þmX

( )

¼
∂AX

∂t
(19)

The one-dimensional model of Akan and Yen [1] assumed mX = 0 in Eq. (18).
The mX term is assumed to be negligible when combined with the other similar
terms—that is, they are considered as a sum rather than as individual directional
terms that typically have more significance when examined individually. Addition-
ally, the term “diffusion” routing indicates assuming that several convective and
other components have a small contribution to the coupled mass and energy balance
equations and therefore are neglected in the computational formulation to simplify
the model accordingly. Thus, the one-dimensional DHM equation is given by
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∂

∂X
KX

∂H

∂X
¼

∂AX

∂t
(20)

where KX is now simplified as

Kx ¼
1:486
n AxR

2=3

∂H
∂X

'

'

'

'

1
2

(21)

For a channel of constant width, WX, Eq. (20) reduces to

∂

∂X
KX

∂H

∂X
¼ WX

∂H

∂t
(22)

Assumptions other than mX = 0 in Eq. (19) result in a family of models:

mx ¼

∂ðQx
2=AXÞ

∂X

.

gAX ðconvective acceleration modelÞ

∂QX

∂t
=gAX ðlocal acceleration modelÞ

&

∂QX

∂t
þ
∂ðQx

2=AXÞ

∂X

’,

gAX ðfully dynamic modelÞ

0 ðDHMÞ

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

(23)

4.2 Two-dimensional diffusion hydrodynamic model

The set of (fully dynamic) 2D unsteady flow equations consists of one equation
of continuity

∂qx
∂x

þ
∂qy
∂y

þ
∂H

∂t
¼ 0 (24)

and two equations of motion

∂qx
∂t

þ
∂

∂x

qx
2

h

( )

þ
∂

∂y

qxqy
h

( )

þ gh Sfx þ
∂H

∂X

( )

¼ 0 (25)

∂qy
∂t

þ
∂

∂y

qy
2

h

" #

þ
∂

∂y

qxqy
h

( )

þ gh Sfy þ
∂H

∂y

( )

¼ 0 (26)

where qX and qy are flow rates per unit width in the x and y directions; Sfx and Sfy
represents friction slopes in x and y directions; H, h, and g stand for water surface
elevation, flow depth, and gravitational acceleration, respectively; and x, y, and t
are spatial and temporal coordinates.

The above equation set is based on the assumptions of constant fluid density
without sources or sinks in the flow field and of hydrostatic pressure distributions.

The local and convective acceleration terms can be grouped, and Eqs. (25) and
(26) are rewritten as

mZ þ Sfz þ
∂H

∂Z

( )

¼ 0, z ¼ x, y (27)
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where mZ represents the sum of the first three terms in Eqs. (25) or (26) divided
by gh. Assuming the friction slope to be approximated by the Manning’s formula,
one obtains, in the US customary units for flow in the x or y directions,

qZ ¼
1:486
n

h5=3Sfz
1=2, z ¼ x, y (28)

Eq. (28) can be rewritten in the general case as

qZ ¼ %KZ
∂H

∂Z
% KZmZ, z ¼ x, y (29)

where

KZ ¼
1:486
n

h5=3

∂H
∂S þmS

'

'

'

'

1=2
, z ¼ x, y (30)

The symbol s in Eq. (30) indicates the flow direction which makes an angle of

θ ¼ tan %1 qy=qx

# $

with the positive x direction.

Themz term is assumed to be negligible [1–5] when combined with the other
similar terms, i.e., they are considered as a sum rather than as individual directional
terms that typically have more significance when examined individually. Additionally,
the term “diffusion” routing indicates assuming that several convective and other
components have a small contribution to the coupled mass and energy balance equa-
tions and therefore are neglected in the computational formulation to simplify the
model accordingly. Neglecting this term results in the simple diffusion model

qZ ¼ %KZ
∂H

∂Z
, z ¼ x, y (31)

The proposed 2D DHM is formulated by substituting Eq. (31) into Eq. (24)

∂

∂X
Kx

∂H

∂X
þ

∂

∂y
Ky

∂H

∂y
¼

∂H

∂t
(32)

If the momentum term groupings were retained, Eq. (32) would be written as

∂

∂x
Kx

∂H

∂x
þ

∂

∂y
Ky

∂H

∂y
þ S ¼

∂H

∂t
(33)

where

S ¼
∂

∂x
Kxmxð Þ þ

∂

∂y
Kxmy

! "

and Kx and Ky are also functions of mx and my, respectively.

5. Numerical approximation

5.1 Numerical solution algorithm

The one-dimensional domain is discretized across uniformly spaced nodal
points, and at each of these points, at time (t) = 0, the values of Manning’s n, an
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elevation, and initial flow depth (usually zero) are assigned. With these initial
conditions, the solution is advanced to the next time step (t + ∆t) as detailed below

1.Between nodal points, compute an average Manning’s n and average geometric
factors

2.Assuming mX = 0, estimate the nodal flow depths for the next time step
(t + ∆t) by using Eqs. (20) and (21) explicitly

3.Using the flow depths at time t and t + ∆t, estimate the mid time step value of
mX selected from Eq. (23)

4.Recalculate the conductivities KX using the appropriate mX values

5.Determine the new nodal flow depths at the time (t + ∆t) using Eq. (19), and

6.Return to step (3) until KX matches mid time step estimates.

The above algorithm steps can be used regardless of the choice of definition for
mX from Eq. (23). Additionally, the above program steps can be directly applied to a
two-dimensional diffusion model with the selected (mX,my) relations incorporated.

5.2 Numerical model formulation (grid element)

For uniform grid elements, the integrated finite difference version of the nodal
domain integration (NDI) method [6] is used. For grid elements, the NDI nodal
equation is based on the usual nodal system shown in Figure 3. Flow rates across the
boundary Г are estimated by assuming a linear trial function between nodal points.

For a square grid of width δ

q ГEj ¼ % KX ГEj½ ' HE %HC½ '∕δ (34)

where

KxjГE

1:486
n

h5=3
( )

ГE

. HE %HC

δ cos θ

'

'

'

'

'

'

'

'

1=2

; jHE %Hcj≥ℇ

0 ; HE %HCj j< ε

8

>

<

>

:

(35)

In Eq. (35), h (depth of water) and n (the Manning’s coefficient) are both the
average of their respective values at C and E, i.e., h ¼ hC þ hEð Þ=2 and n ¼
nC þ nEð Þ=2. Additionally, the denominator of KX is checked such that KX is set to
zero if HE %HCj j is less than a tolerance ε such as 10%3 ft.

The net volume of water in each grid element between time step i and i + 1 is
∆qC

i ¼ q rEj þ q rwj þ q rNj þ q rSj and the change of depth of water is ∆HC
i ¼

∆qC
i ∗∆t=δ2 for time step i and i + 1 with ∆t interval. Then the model advances in

time by an explicit approach

HC
iþ1 ¼ ∆HC

i þHC
i (36)

where the assumed input flood flows are added to the specified input nodes at
each time step. After each time step, the hydraulic conductivity parameters of
Eq. (35) are reevaluated, and the solution of Eq. (36) is reinitiated.
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5.3 Model time step selection

The sensitivity of the model to time step selection is dependent upon the slope of

the discharge hydrograph (∂Q
∂t ) and the grid spacing. Increasing the grid spacing size

introduces additional water storage to a corresponding increase in nodal point flood
depth values. Similarly, a decrease in time step size allows a refined calculation of
inflow and outflow values and a smoother variation in nodal point flood depths with
respect to time. The computer algorithm may self-select a time step by increments
of halving (or doubling) the initial user-chosen time step size so that a proper
balance of inflow-outflow to control volume storage variation is achieved. In order
to avoid a matrix solution for flood depths, an explicit time stepping algorithm is
used to solve for the time derivative term. For large time steps or a rapid variation in

the dam-break hydrograph (such as ∂Q
∂t is large), a large accumulation of flow

volume will occur at the most upstream nodal point. That is, at the dam-break
reservoir nodal point, the lag in outflow from the control volume can cause an
unacceptable error in the computation of the flood depth. One method that offsets
this error is the program to self-select the time step until the difference in the rate of
volume accumulation is within a specified tolerance.

Due to the form of the DHM in Eq. (22), the model can be extended into an
implicit technique. However, this extension would require a matrix solution process
which may become unmanageable for two-dimensional models which utilize hun-
dreds of nodal points.

6. Conclusions

The one- and two-dimensional flow equations used in the diffusion hydrody-
namic model are derived, and the relevant assumptions are listed. These equations,
which are the basis of the model, are based on the conservation of mass and
momentum principles. The explicit numerical algorithm and the discretized equa-
tions are also presented. The ability of the model to self-select the optimal time step
is discussed.

Figure 3.
Two-dimensional finite difference analog.
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