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Hydrologic models are composed of several components which are all parameter dependent. In

the general setting, parameter values are selected based on regionalization of observed rainfall-

runoff events, or upon calibration at local stream gauge data when available. Based on these data,

a selected parameter set is then used for the hydrologic model. However, seldom are hydrologic
model outputs examined as to the total variations in output due to the independent but coupled

variations in parameter input values. In this paper, three of the more common techniques for

evaluating model output distributions are compared as applied to a selected hydrologic model;

i.e., an exhaustion techniques, Monte Carlo simulation method, and the more recently advanced

Rosenblueth technique. It is concluded that, for the hydrologic model considered, the Monte

Carlo technique provides more accuracy in comparison to Rosenblueth technique (for the same’
computational effort), but is less accurate than Exhaustion. .

I. INTRODUCTION

Almost all policy statements regarding the design of flood
control systems involve the use of a hydrologic
mathematical model to estimate design flows for
subsequent channel sizing and floodplain delineation.
Typically, these models are hybridizations of other
‘standardized’ models which have been calibrated to
regions dissimildr to the region where the model is
intended for use. Or if the model has been regionalized by
calibration to several local catchments, a prescribed set of
rules are decided upon (e.g., a ‘hydrology manual’) as to
how to select model parameter values for use in the
subsequent estimation of runoff quantities. And finally, if
the model has been calibrated to catchment rainfall-
runoff data when available, an ‘optimized’ set of
parameters are concluded which minimize, in some norm
sense, the errors between model-produced and stream
gauge measured runoff hydrographs.

In all of the above settings, the hydrologic model of the
catchment is based upon a set of parameters which
produce a single model output for decision making
purposes. Oftentimes these model output values are
compared to other models’ single-output values and
decisions are concluded as to which model is ‘best’.

Because all hydrologic models are gross simiplifi-
cations of the several hydrologic processes, and due to the
sparse data (if' any) available to compute the model
parameters, each of the model parameters and submodels
(e.g., loss functions, routing methods, etc.) have an
associated  distribution-frequency ~ which  relates
parameter values to the probability of exceedence (or
frequency of occurrence), or relates the probability of
which submodel (e.g., which loss function to use, which
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flow routing submodel to use, etc.) best represents the
actual ongoing hydrologic/hydraulic process. The use of a
single set of parameter values or choices of submodel
algorithms to be used in the global model is but a single
vector in an infinity of possible vectors.

Consequently, the policy decisions need to include the
uncertainty of the hydrologic model in the selection of a
level for flood protection. Generally, policy statements
reflect the control of a peak flow rate or Q in the design of
flood control facilities. The policy may incorporate the
accommodation of a time distribution of runoff volume
by means of a design storm runoff hydrograph (for
example), but ultimately a Q is developed for channel
sizing, for the delineation of a floodplain, and for the
planning of urbanization. In this paper, only the
uncertainty in model estimated Q (i.e., peak flow rate)
values is considered in order to simplify the presentation
in the comparison of the uncertainty evaluation
techniques.

.The policy statement, then, is reflected by the
calculation of a specific Qm based upon using a single
input vector (which represents parameter estimates,
submodels to use, land use assumptions, etc.) into the
model. Should another input vector be used, another Q
estimate would result where typically Q#Qm. The
question then becomes: what is the distribution of
possible Q values as all possible input vectors are
considered according to their respective probabilities of
occurrence? To address this issue, a frequency
distribution of the range of model estimated @ needs to be
computed. But the enormity of this task has precluded a
precise evaluation for most problems. For example, in a
simple four parameter unit hydrograph model based
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upon a timing parameter (lag), a unit hydrograph _(S-
graph equivalent), and a two parameter loss function
(Fm=maximum loss rate or ¢-index technique, Y=
constant percentage loss rate fraction) where the
parameter values can be presumably represented by a
simple distribution-frequency histogram of 9-, 5-, 6- and
S-values respectively, 1350 test runs must be made with
the model to exhaust all possible input vector definitions.
Should the catchment model be discretized into, say, 4
subareas linked together by a single reach two-parameter
channel routing submodel where both of the routing
parameter distribution-frequency histograms have 5
values, then 8.3x 10'® model runs are required. It is
apparent that an alternative approach is needed in order
to determine a model output Q distribution-frequency
relationship.

The main objective of this paper is to present the results
in the development of a distribution-frequency
relationship for a hydrologic model output, the peak Q,
using three techniques: (i) Exhaustion; that is, using every
possible vector to evaluate the model output (Q) values;
(ii) Monte Carlo simulation method®®; that is, randomly
choosing input vectors to evolve a @ distribution-
frequency; and (iii) The Rosenblueth technique®? which
utilizes an approximation to estimate the statistics of the
Q, ie., the mean and variance of Q. Details of the
considered hydrologic model are presented in Section II.
An examination of the ‘model’ response function to
parameter uncertainty is contained in Section III.
Specifics of the Monte Carlo simulation and Rosenblueth
techniques are contained in Section IV. Section IV also
presents the computational results from the three
considered approaches for comparison purposes.

If. HYDROLOGIC MODEL

Model selection
Of the over 100 models available, a design storm/unit
hydrograph model (i.e., ‘model’) is selected for this
particular application. Some of the reasons are as follows:
(1) the design storm approach — the multiple discrete
event and continuous simulation categories of models
have not been clearly established to provide better
predictions of flood flow frequency estimates for
evaluating the impact of urbanization and for design of
flood control systems than a calibrated design storm
model>*3%67; (2) the unit hydrograph method — it has
not been shown that alternate approaches (i.e., the
kinematic wave modelling technique) provide a
significantly  better representation of watershed
hydrologic response than a model based on unit
hydrographs (locally calibrated or regionally cali-
brated) that represent free-draining. catchments!-24:%:38.
23,26,30,31,49,50,52,55,63,66,69,70,73,74,77 . (3) model usage —
this class of ‘model’ has been used extensively nationwide
and has proved generally acceptable and
rdiablea.l0.15.19.23,37.39.41.42.43.53; (4) parameter cali-
bration — the ‘model’ used in this application is
based upon a minimal number of parameters, giving
higher accuracy in calibration of model parameters to
rainfall-runoff data, and the design storm to local
flood flow frequency tendencies®12:18:20,22,23.29,32,35,
T 38,44,43,46,58.62,66.70,79. (5) calibration effort — the
‘model’ does not require large data or time requirements
for calibration®+12:18.20.29,36,38,66,70. (g) anplication
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effort — the ‘model’ does not require excessive
computation for application®*%7%; (7) acceptability — the
‘model’ uses algorithms that are accepted in engineering
practice®*"-%%; (8) model flexibility for planning — data
handling and computational submodels can be coupled
to the ‘model’ (e.g., channel and basin routing) resulting
in a highly flexible modelling capability®°%; (9) model
certainty evaluation — the certainty of modelling results
can be readily evaluated as a distribution of possible
outcomes over the probabilistics distribution of
parameter values34 39:60.66.75.76

Runoff hydrograph model parameters

The design storm unit hydrograph model (‘model’) is
based upon several parameters; namely, two loss rate
parameters (a ¢-index coupled with a fixed percentage),
an S-graph, catchment lag, storm pattern (shape, location
of peak rainfalls, duration), depth area (or depth-area-
duration) adjustment, and the return frequency of
rainfall.

Loss function
Theloss function, f(t), used in the ‘model’ is defined by

Yi(), for YI(t)<Fm
Fm, otherwise

f(:)={ o)

where Y is the low loss fraction and Fm is a maximum loss
rate defined by

Fm=Ya,F, (2)
where a,; is the actual pervious area fraction with a
corresponding maximum loss rate of Fp; the infiltration
rate for impervious area is set at zero; and I(r) is the design
storm rainfall intensity at storm time ¢.

The use of a constant percentage loss rate fraction ¥ in
equation (1) is reported in Scully and Bender®?, Williams
et al.””, and Schilling and Fuchs®®. The use of a phi index
(¢-index) method in effective rainfall calculations is also
well-known.

The low loss rate fraction is estimated from the SCS
loss rate equation (US Dep. of Agric., 1972) by

Y=1-Y (3)
where ¥ is the catchment yield computed by
Y=Y ayY; @)

In equation (4), Y; is the yield corresponding to the
catchment area fraction a; and is estimated using the SCS
curve number (CNj by

2
Yj= (PN- Ia) (5)
(P24—1a+5)Py,
where P,,=the 24-hour T-year precipitation depth; Ia is
the initial abstraction of Ia=02S: and S=
(1000/CN) — 10.

From the above relationships, the low loss fraction, ¥,
acts as a fixed loss rate percentage, whereas Fm serves as
an upper bound to the possible values of f(f)=¥I(r).

Values for Fm are based on the actual pervious area
tover percentage (a,) and a maximum loss rate for the
pervious area, F,. Values for F, are developed from
rainfall-runoff caﬁbration studies of several significant
storm events for several watersheds within the region
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under study. Further discussions regarding the
estimation of parameter values are contained in a
subsequent section.

A distinct advantage afforded by the loss function of
equation (1) over loss functions such as Green-Ampt or
Horton is that the effect of the location of the peak rainfall

intensities in the design storm pattern on the model peak °

flow rate (Q) becomes negligible. That is, front-loaded,
middle-loaded, and rear-loaded storm patterns all result
in nearly equal peak flow estimates. Consequently, the
shape (but not magnitude) of the design storm pattern is
essentially eliminated from the list of parameters to be
calibrated in the runoff hydrograph ‘model’ (although the
time distribution of runoff volumes are affected by the
location of the peak rainfalls in the storm pattern which is
a consideration in detention basin design).

S-graph

The S-graph representation of the unit hydrograph
(e.g., -McCuen and Bondelid*!, Chow and
Kulandalswamy!®, Mays and Coles*®) can be used to
develop unit hydrographs corresponding to various
watershed lag estimates. The S-graph was developed by
rainfall-runoff calibration studies of several storms for
several watersheds. By averaging the S-graphs for each
watershed studied, a representative S-graph is developed
for each watershed. By comparing the representative S-
graphs, regional S-graphs were derived to represent the
average of watershed-averaged S-graphs.

Lag

Fundamental to any hydrologic model is a catchment
timing parameter. For the ‘model’, watershed lag is
defined as the time from the beginning of effective rainfall
to that time corresponding to 50-percent of the S-graph
ultimate discharge. To estimate catchment lag, it is
assumed that lag is related to the catchment time of
concentration (T¢) as calculated by a sum of normal depth
flow calculated travel times; i.e., a mixed velocity method
(e.g., Beard and Chang?®, McCuen et al.*?). To correlate
lag to Tc estimates, lag values measured from watershed
calibrated S-graphs were plotted against Tc estimates. A
least-squares best fit line gives the estimator

lag=0.80T¢ (6)

Design storm pattern

A 24-hour duration design storm composed of nested
5-minute unit intervals (with each principal duraction
nested within the next longer duration) was adopted as
part of the policy. The storm pattern provides equal
return frequency rainfalls for any storm duration, i.e., the
peak S5-minute, 30-minute, 1-hour, 3-hour, 6-hour, 12-
hour, and 24-hour duration rainfalls are all of the selected
T-year return frequency. Such a storm pattern
construction is found in HEC Training Document No. 15
(1982) which uses a nested central-loaded design storm
pattern.

Runoff hydrograph model

The ‘model’ produces a time distribution of runoff Q(t)
given by the standard convolution integral representation
of

Q)= f e(s)u(t—s)ds (7
0

where Q(t) is the catchment flow rate at the point of
concentration; e(s) is the effective rainfall intensity; and
u(t—s) is the unit hydrograph developed from the
particular S-graph. In equation (7), e(s) represents the
time distribution of the 24-hour duration design storm
pattern modified according to the loss function definition
of equation (1).

In the use of equation (7) for a particular watershed, an
estimate of catchment lag is used to construct a unit
hydrograph u(x). Then, based on the catchment area
(depth-area adjustment) and loss rate characteristics, e(s)
is determined. Because the peak flow rate Q =max Q(t)
shows a negligible variation due to a change in storm
pattern shape (except for a severe front loaded, near-
monotonically decreasing pattern or a rear loaded, near-
monotonically increasing pattern); the model parameters
that affect Q are loss rates (YI(¢) and F,), S-graphs, lag
estimates, depth-area adjustment curve set, and design
storm rainfall return frequency. Note that Fm is not a
calibration parameter as Fm=a_F, where a, is the actual
measured pervious area fraction.

Parameter calibration

Considerable rainfall-runoff calibration data has been
prepared by the Corps of Engineers (COE) for use in their
flood control design and planning studies. The watershed
information available includes rainfall-runoff calibration
results for three or more significant storms for watershed,
which is used to develop optimized estimates for the S-
graph, lag, and loss rate at the peak rainfall intensities.
Although the COE used a more rational Horton type loss
function which decreases with time, only the loss rate that
occurred during the peak storm rainfalls was used in the
calibration effort reported herein.
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Probabilistic Engineering Mechanics, 1987, Vol. 2, No. 1 27



Table 1. Watershed characteristics

Watershed geometry

Calibration results

Length of Percent )
Watershed Area Length centroid Slope impervious Te Storm Peak F, Lag  Basin
name (mi?) (mi) {(mi) (ft/mi) (%) (hrs) date (inch/hr) (hrs) factor
Alhambra Wash! 13.67 8.62 4.17 824 45 0.89 Feb. 78 0,59, 0.24 062 0015
. Mar. 78 0.35,0.29
) Feb. 80 0.24
Compton 21 24.66 12.69 6.63 138 55 222 Feb. 78 0.36 094 0015
Mar. 78 029
Feb. 80 0.44
Verdugo Wash! 268 10.98 549 3169 20 - Feb. 78 0.65 064 0016
Limekiln! 10.3 777 341 295.7 25 - Feb. 78 027 0.73  0.026
Feb. 80 027
San Jose? 834 23.00 8.5 60.0 18 - Feb. 78 0.20 1.66 0.020
Feb. 80 . 0.39
Sepulveda? 152.0 19.0 9.0 1430 24 - Feb. 78 0.22,0.21 .12 0.017
Mar. 78 0.32
Feb. 80 042
Eaton Wash! 11.02* 8.14 341 90.9 40 1.05 - - - 0.0157
(57%)
Rubio Wash! 12.20° 9.47 5.11 1257 40 0.68 - - - 00157
(3%) -
Arcadia Wash'! 7.708 5.87 303 156.7 45 0.60 - - - 0.015%
(14%)
Compton 1! 15.08 9.47 3.79 14.3 55 1.92 - - == 0.015®%
Dominguez! 37.30 11.36 492 79 60 2.08 = - - 00158
Santa Ana Delhi? 17.6 871 . 417 16.0 40 1.73 - - - 0.053°
0.040!
Westminster? 6.7 5.65 1.39 13 40 - - - = 0.079°
0.040!
El Modena-Irvine? 119 6.34 2.69 52 40 0.78 - - - 0.028°
Garden Grove-
Wintersberg' 20.8 11.74 473 10.6 64 1.98 S - - i
San Diego Creek! 36.8 14.2 8.52 950 20 139 - = - -
Notes : Watershed Geometry based on review of quadrangle maps and LACFCD strom drain maps. B

: Watershed Geometry based on COE LACDA Study.

: Watershed Geometry based on COE Reconstitution Study for Santa Ana Delhi and Westminster Channels (June 1983).
: Area reduced 57 % due to several debris basins and Eaton Wash Dam reservoir, and groundwater recharge ponds.

: Area reduced 3%, due to debris basin.

: 0.013 basin factor reported by COE (subarea characteristics, June 1984).
: 0.015 basin factor assumed due to similar watershed values of 0.015.

: Average basin factor computed from reconstitution studies.

1
2
3
4
5
6: Area reduced 14 % due to several debris basins.
7
8
9
0: COE recommended basin factor for flood flows.

b

A total of 12 watersheds were considered in detail in
this study. Seven of the watersheds are located in Los
Angeles County while the other five catchments are in
Orange County (Fig. 1). Several other local watersheds
were also considered in light of previous COE studies that
resulted in additional estimates of loss rates, S-graphs,
and lag values. Table 1 provides an itemization of data
obtained from the COE studies, and watershed data
assumed for catchments considered hydrologically
similar to the COE study catchments.

Peak loss rate, E,

From Table 1, several peak ra1nfall loss rates are
tabulated which mclude when appropriate, two loss rates
for double-peak storms. The range of values for all F,
estimates lie between 0.30 and 0.65 inch/hour with the
highest value occurring in Verdugo Wash which has
substantial open space in foothill areas. Except for
Verdugo Wash, 0.20<F,<0.60 which is a variation in
values of the order noted for Alhambra Wash alone. Fig.
2 shows a histogram of F, values for the several
watersheds. It is evident from tfne figure that 88 percent of
F, values are between 0.20 and 0.45 inch/hour, with 77
percent of the values falling between 0.20 and 0.40 inch/
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Fig. 2. Distribution-frequency of pervious area loss
function, F,

hour. Consequently, a regional mean value of F ,equal to
0.30 inch/hour is proposed; this value contains nearly 80
percent of the F, values, for all watersheds, for all storms,
within 0.10 inch/hour.
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S-graph

Each of the watersheds listed in Table 1 has S-graphs
developed for each of the storms where peak loss rate
values were developed. For example, Fig. 3 shows the
several S-graphs developed for Alhambra Wash. By
averaging the several S-graph ordinates (developed from
rainfall-runoff data), an average S-graph was obtained.
By combining the several watershed average S-graphs
(Fig. 4) into a single plot, an average of averaged S-graphs
is obtained. This regionalized S-graph (Urban S-graph in
Fig. 4) can be proposed as a regionalized S-graph for the
several watersheds.

In order to quantify the effects of variations in the §-
graph due to variations in storms and in watersheds (i.e.,
for ungauged watersheds not included in the calibration
data set), the scaling of Fig. 5§ was used where the variable
‘X’ signifies the average value of an arbitrary S-graph as a
linear combination of the steepest and flattest S-graphs
obtained. That is, all the S-graphs (all storms, all
catchments) lie between the Feb. 1978 storm Athambra §-
graph (X =1) and the San Jose S-graph (X=0). To
approximate a particular S-graph of the sample set,

S(X)=XS, +(1-X)S, (8)

where §(X) is the S-graph as a function of X, and §, and
§, are the Alhambra (Feb. 1978 storm) and San Jose §-
graphs, respectively. Fig. 6 shows the population
distribution of X where each watershed is weighted
equally in the total distribution (i.e., each watershed is
represented by an equal number of X entries). Table 2 lists
the X values obtained from the Fig. 5 scalings of each
catchment S-graph. In the table, an ‘upper’ and ‘lower’ X -
value that corresponds to the X coordinate at 80 percent
and 20 percent of ultimate discharge values, respectively,
is listed. An average of the upper and lower X values is
used in the population distribution of Fig. 6.

Catchment lag

In Table 2, the Urban S-graph, which represents a
regionalized S-graph for urbanized watersheds in valley
type topography, has an associated X value of 0.85. It is
noted, however, that when the Urban S-graph is
compared to the standard SCS S-graph, a striking
similarity is seen (Fig. 7). Because the new Urban S-graph
is a near duplicate of the SCS S-graph, it was assumed
that catchment lag (COE definition) is related to the
catchment time of concentration, Te, as is generally
assumed in the SCS approached.
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Catchment Tc values are estimated by subdividing the
watershed into subareas with the initial subarea less than
10 acres and a flowlength of less than 1000 feet. Using a
Kirpich formula, an initial subarea Tc is estimated, and a
Q iscalculated. By subsequent routing downstream of the
peak flowrate (Q) through the various conveyances (using
normal depth flow velocities) and adding successive
estimated subarea contributions, a catchment Tc is
estimated as the sum of travel times analogous to a mixed
velocity method.

In this study, lag values are developed directly from
available COE calibration data, or by using ‘basin
factors” calibrated from neighboring catchments (see
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Table 2. Catchment S-graph X-values

Watershed name Storm X (Upper) X (Lower) X (Avg)
Alhambra Feb. 78 1.00 1.00 1.00
Feb. 80 0.95 0.60 0.78
Mar. 78 0.70 0.80 0.75
Limekiln Feb. 78 0.50 0.80 0.65
Feb. 80 0.80 1.00 0.90 (2)
Supulveda Avg. , 0.90 0.80 0.85(3)
Compton Avg. 0.90 1.00 0.95(3)
Westminster Avg. 0.60 0.60 0.60 (3)
Santa Ana Delhi Avg. 0.80 1.00 0.90 (3)
Urban Avg. 0.90 0.80 0.85
Note:

In Table 2, the numbers in parenthesis indicate the weighting of the average X value. That is, due to only the average S-graph (previously derived by the
COE) being available, it is weighted to be equally represented in the sample set with respect to the other catchments.
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Fig. 7. Comparison of the standard SCS and the

regionalized S-graphs

" Fig. 1). The COE standard lag formula is:

' LL \0-38
lag (hours)= 24ﬁ( - ;”) 9)
50-

where L is the watershed length in miles; L_, is the length
to the centroid along the watercourse in miles; s is the
slope in ft/mile; and 7 is the basin factor.

Because Eaton Wash, Rubio Wash, Arcadia Wash and
Alhambra Wash are all contiguous (see Fig. 1), have
similar shape, slopes, development patterns, and drainage
systems, the basin factor of 7=0.015 developed for
Alhambra Wash was also used for the other three
neighboring watersheds. Then the lag was estimated
using equation (9).

Compton Creek has two stream gauges, and the fi=
0.015 developed for Compton 2 was also used for the
Compton 1 gauge. The Dominguez catchment, which is
contiguous to Compton Creek, is also assumed to have a
lag calculated from equation (9) using 7=0.015.

The Santa Ana-Delhi and Westminster catchment
systems of Orange County have lag values developed
from prior COE calibration studies. Fig. 8 provides a
summary of the local lag versus Tc data. A least-squares
best fit results in

lag=0.72T¢ (10)
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McCuen et al.*?* provide .additional measured lag
values and mixed velocity Tc estimates which, when lag is
modified according to the COE definition, can be plotted
with the local data such as shown in Fig. 9. A least-
squares best fit results in:

lag=0.80T¢ (11)

In comparison, McCuen*! gives standard SCS
relationships between lag, Tc, and time-to-peak which,
when modified to the COE lag definition, results in:

lag=0.77Tc (12)

Adopting a lag of 0.80 Tc as the estimator, the distribution
of (lag/0.8Tc) values with respect to equation (11) is
shown in Fig. 10.
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III. PARAMETER UNCERTAINTY AND MODEL
RESPONSE

Each of the ‘model’ parameters (lag, F,, and S-graph) are
assumed to have the probability distribution functions
(pdf) shown in a discrete histogram form in Figs 2, 6, and
10 for F,, 8(X), and lag=0.8Tc, respectively. For
example, If the ‘model’ is applied at a gauged site, say
Alhambra Wash, then the variability in the S-graph is not
given by Fig. 6 for §(X), where 0.60<1, but for 0.75<
X <1 (see Table 2). Similarly, the estimate for lag is much
more certain for Alambra Wash than shown in Fig. 10.
Consequently, the uncertainty in the ‘model’ output for a
gauged site will typically show a significantly smaller
range in possible outcomes than if the total range of
parameter values of Figs 6 and 10 are assumed (as is done
for the ungauged sites, or sites where an inadequate
length of data exist for a constant level of watershed
development).

To evaluate the ‘model’ uncertainty, a simulation that
exhausts all combinations of parameter values shown in
the several pdf distributions was prepared (i.e., the
exhaustion approach). Because the lag/Tc plot is a
function of Te, several Tc values were assumed and lag
values varied freely according to Fig. 10. The resulting
Q/Om distribution is shown in Fig. 11 for the case of Te
equal to 1 hour and a watershed area of 1 square mile
(hence, depth-area adjustments are not involved). In the
fi igure, Q is a possible ‘model’ peak flow rate outcome, and
Om is the peak flow rate obtained from the ‘model” policy

of assuming lag equal to 0.8Tc, F, equal to 0.30 inch/
hour, and X equal to 0.85 (Urban §-graph). For different
model parameters, the @/Qm plots were all very close to
Fig. 11 as a function of Tc. Therefore, Fig. 11 is taken to
represent the overall /Qm distribution, which also reflects
the inherent uncertainty in design @ values which is
typically used in a flood control policy statement.

An important question arises as to whether or not the
certainty of outcomes from the calibrated model can be
reduced (i.e., the model made more certain) by
introducing additional parameters. It is not clear in the
current literature whether such a claim has validity.
However, some pointed remarks can be taken from
Klemes and Bulu®* who evaluate the ‘limited confidence
in confidence limits derived by operational stochastic
hydrologic models’. They note that advocates of
modelling “sidestep the real problem of modelling - the
problem of how well a model is likely to reflect the future
events — and divert the user to a more tractable, though
less useful, problem of how best to construct a model that
will reproduce the past events’. In this fashion, ‘by the
time the prospective modeller has dug himself out of the
heaps of technicalities, he either will have forgotten what
the true purpose of modelling is or will have invested so
much effort into the modelling game that he would prefer
to avoid questions about its relevance’. Of special interest
is their conclusion that ‘Confidence bands derived by
more sophisticated models are likely to be wider than
those derived by simple models’. That is, ‘the quality of
the model increases with its simplicitly’.

In a reply by Nash and Sutcliffe*® to comments by
Fleming'®, the simple model structure used by Nash and
Sutcliffe*® is defined as to modelling completeness in
comparison to the Stanford Watershed Model variant,
HSP. Nash and Sutcliffe write that *. . . We believe that a
simple model structure is not only desirable in itself but is
essential if the parameter values of the component parts
are to be determined reliably through an optimization
procedure . . .. One must remember that the data always
constitute a limited sample and the optimized values are
‘statistics’ derived from this sample and therefore subject
to sampling variance. The more complex the model
structure the greater is the difficulty in obtaining
optimum parameter values with low sampling variance.
This difficulty becomes particularly acute . . . when two or
more model components are similar in their
operation ...".

Should a comparison be made between a simple model,
such as described herein, and an ‘advanced’ model, the
results would not be conclusive. As Nash and Sutcliffe
write, ‘...The more complex model would almost
certainly provide a better fit, as a linear regression
analysis on a large number of variables will almost
invariably provide a better fit than one of those
independent variables whose significance has been
established’. Hence, the hydrologist must be careful to
evaluate modelling results obtained from a verification
test rather than obtained from a calibration data set.
Nash and Sutcliffe also note the dominating importance
of errors in rainfall and effective rainfall estimates in
complex models such as HSP: “We wonder, however, how
the parameters expressing spatial variation of rainfall or
infiltration capacity, can be optimized at all, let alone
with stability or significance, in the typical case where the
short-term ram[all data are based on a single recording
rain gauge .
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IV. STATISTICAL MODELS FOR EVALUATING
HYDROLOGIC MODEL UNCERTAINTY

Many hydrology models involve complex systems of
submodels whose performance fluctuates because of
variations in their parameters. From a knowledge of the
probable parameter distributions and an understanding
of the model structure, the model output distribution due
to parameter uncertainty can be evaluated.

Several statistical models are available for studying the
relationship between the model output distribution and
parameter uncertainty. In a statistical model, the
parameters of a hydrology model are considered as
random varables sampled from respective value
distributions usually developed from regionalized data
analysis. For parameters with discrete probability density
functions (pdf) an exhaustion model can be used to
calculate the mean and standard deviation of the model
output. However in the general case, the number of trials
needed to exhaust the parameter vector field is so large,
that this technique cannot be used. If continuous or
discrete probability density functions of each parameter
are known, then the Monte Carlo simulation method can
be used to develop estimates of the mean and variance of
model output. The moments generation method is
another technique which can be applied to a simple
performance-parameters relationship model with known
mean and standard deviation for each parameter. If the
coefficient of variation (which is defined as the ratio
between standard deviation and mean) for each
parameter is small, then a simplified two-point estimate
method®? may be considered.

Exhaustion model

Simple discrete probability density functions can be
derived using histograms for each random variable. For
demonstration purposes, consider a hydrology model
output Q based upon three parameters; i Q0=
F(X,,X,,X,), where the X; are represented by three
different discrete probability densxty functions (Fig. 12).

The mean of the subject model output, Q, is

3
2, PyiPyPauF(X,, Py Py)  (13)

1k=1

1w

-3

i=1j
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and the standard deviation is

3 2 3 1/2
(Z E Z Pupszak[F(Xn-szX:k}—glz)
i=1j=1k=1
(14)

where P, is the probability weighting assigned to X, at
outcome i. Equations (13) and (14) can be extended
directly for any finite number of parameters and number
of parameters-histogram values.

Monte Carlo simulation method

If probability density functions for each of the parameters
can be obtained or estimated, the Monte Carlo
simulation method can be used. Because the Monte Carlo
simulation method involves randomly selected input
vectors, the computed model output statistics (e.g., mean,
variance) are themselves random variables and the
estimates are also subject to statistical fluctuations. Thus
any estimate will be a random variable and will have an
associated error band. The larger the number of trials in
the simulation, it is hoped the more precise will be the
estimates for the statistics.

Moments generation method

Generally, the density’ functions are not available for
most of the parameters in a hydrology model. However,
oftentimes the mean and standard deviation of each
parameter can be estimated from the limited information.

Fia
P11
P13
11 P 343
Parameter Xl
P11 Paa
11 X33
Parameter X2
P32
P3ll PI33
%31 23 X33

Parameter x3

Fig. 12. Histogram representation of hydrologic model
parameters
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By using the previous example, the mean of the model
output can be estimated from the moments generation
method as

E[Q]=E[F(X,,X,,X,)]
2 azF(X—l!XJJXB)
= oX}

-and the variance of the system performance can be
estimated as

+1/2 . Var(X,) (15).

3 [OF(X; X 5,X.)\2

Var[Q]= Y, i ST Var(X,)  (16)
i=1 0X;

in which X |, X,, X ; are the estimated means and Var(X))
is the estimated variance for each parameter, respectively.

Rosenblueth method
If the first and second partial derivatives in the above

equations are not available, then the two-point estimate
method®? can be considered. The estimated mean (Q)and
standard deviation(s) for the model output (Q) from the
two-point estimate method are

O=1/8F(X,+5:,X,+5,, X3 +s,)
+1/8F(X, 45, X,+5;,, X 35—5,)
+1/8F(X 45, X;—5,, X3 +5;)
+1/8F(X; — 51, X455, X3+55)
+1/8F(X, —5;,X;—5,, X3 +s3)
+ 1/8F(X; —5;,X;+55,X3—5,)
+1/8F (X, +5,, X;—52, X3—53)
+1/8F(X =5, X,—55,X3—53)  (17)

" LEGEND
Hatershed Boundary

- Stream gage

DOMINGUEZ
CHANNEL:

\

RAIN GAGE 291

Fig. 13. March 1, 1983 recorded storm rainfall distribution

Table 3. Criteria and information needed for different statistic models

MARCH !,1983 RAINFALLS
OVER LOS ANGELES,CALIFORNIA

1st and 2nd Probability density function Mean and

Statistical Partial Iteration standard

model derivative Continuous Discrete number deviation
Exhaustion model No No Yes Ni(pi)®» No
Moment generation model Yes No No No Yes
Rosenblueth method No No No PG Yes
Monte Carlo simulation method No Yes No 500 ~ 500063 No

Notes: (1). Ni(pi) denotes the discrete points on the discrete distribution function for parameter pi.

(2). n denotes the number of parameters.
(3). Number of iterations based on this study’s results.
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and
s={1/8[F(X, +5, X, 455, Xy +53)— 0]
*® [/S[F(Xx +5|=X1+32,f3_33)—Q_]2

* I/S[F(Xl —sl,)?z—sz,}f:,—s;,)—g]z}”z (18)

in which s, 5,, 5, are the standard deviations of X, X,
X 3, respectively. i

Discussion

The exhaustion model is suitable for models involving
few parameters with sparse discrete pdfs. When the
discrete pdf's become dense, or the number of parameters
becomes large, resulting in an infeasible number of model
outcome runs for the exhaustion technique, then the
Monte Carlo simulation or Rosenblueth techniques
become more attractive. In most engineering problems,
only the means and variances of the parameters need to be
estimated; in which case, the moments generation method
is preferred when the first and second partial derivatives
can be evaluated or approximated. If the model output/
parameters relationship is linear, then either the moments
generation method or the two-point estimate method is
suitable. For a non-linear system with parameters that
have small coefficients of variation, the results from the
moment generation method and the two-point estimate
method are usually satisfactory. The exhaustion model
and the Monte Carlo simulation method are suitable for
non-linear systems and/or for parameters having large
coefficients of vanation.

Since different criteria and information are needed for
each statistical model (Table 3), the selection of a
statistical model should be conducted with care, and
attention must be given to development of a realistic
description of the underlying physical situation to serve as
input to a statistical model.

Comparison of model uncertainty evaluation techniques:
" peak flow estimates
The estimation of the peak flow rates, Q, is a basic
problem in hydrology. An important source of
uncertainty in this estimate is that caused by the uncertain
estimation of model parameters. This uncertainty can
have a significant effect on the flood design value, and its
quantification is an important aspect of evaluating the

Table 4. Results from different statistical models in the study

Q (cfs)

Standard

Model Iterations Mean deviation

Exhaustion 378 683 (687) 190 (101)
(see Fig. 11)

Monte Carlo! 10 649 (658) 166 (102)

25 688 (675) 199 (101)

100 670 (676) 171 (94)

500 683 (682) 181 (94)

1000 681 (684) 185 (94)

5000 683 (685) 187 (93)

Rosenblueth 8 728 (712} 404 (98)

Note:

L. Single‘sample results. All values for the mean and standard
deviation for Q are estimates (see text).
Values in parentheses indicate results by using smaller

coeflicients of variation for the time of concentration and
soil loss function.
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risk involved in a chosen level of flood protection.

For simplicity, the hydrologic model of Section 1I i
assumed to be a function of only the three representative
parameters of soil loss (phi index), watershed time of
concentration and the unit hydrograph (S-graph form)
variable, (X). Figs 2, 6, and 10 show the assumed
histograms for these three random variables. In this
application, the model output considered is the runoff
hydrograph peak flow rate, or Q. Using the scvqral
parameter values from each histogram, an exhaustion
study was performed as described in this sections and the
result is depicted in Fig. 11. For the second analysis using
Monte Carlo technique, a uniform [0, 1] distribution is
used to represent each histogram shown in Figs 2, 6, and
10. The Monte Carlo simulation is used to develop
random model outcomes by use of random input vectors
containing randomly selected parameters values. Finally,
the mean and standard deviation values for each
histogram were used in the Rosenblueth method as the
third model. Table 4 shows the results developed from a
runoff hydrograph model of t square mile. Because only 3
parameters are used in this model setting, the
Rosenblueth technique requires only 2° or 8 trials of the
model, potentially affording a considerable cost savings
over an exhaustion analysis. .

As shown in Table 4, the Rosenblueth model gives the
highest estimated mean value of the Q and also the largest
standard deviation of the estimated Q. This probably
reflects the high coefficients of variation of watershed time
of concentration (and similarly, lag) and soil loss function
(phi index) in the above study.

For further comparison of the Monte Carlo and
Rosenblueth models, the pdf's of watershed lag time and
soil loss function were modified to have small coefficients
of variation. Table 4 also includes the results of the three
statistical approaches for this second study. In this case,
the Rosenblueth model shows acceptable results
compared to the exhaustion model and the Monte Carlo
method.

Itisnoteworthy that in the actual field case study where
the coeflicients of variation of two model parameters are
‘large’, the Rosenblueth technique performed poorly,
even when compared to a Monte Carlo analysis with a
small sample set. Of course, the Monte Carlo technique
estimates are random variables themselves, but in this
study it was found that for over 909 of the time, the
Monte Carlo technique resulted in better estimates of the
mean and standard deviation than the Rosenblueth
method for the same number of trials (i.e., sample size of
8). And when the model parameters are modified to have
a ‘small’ coefficient of vanation, the Rosenblueth
technique produced acceptable estimates but so did the
Monte Carlo method for the same effort.

Because it is not clear beforehand whether a model
uncertainty analysis based upon the Rosenblueth
technique will result in adequate estimates of the mean
and standard deviation, and because the Monte Carlo
performed as good as or better than the Rosenblueth
technique (as applied to this hydrologic model), the
Monte Carlo technique may be preferable for use in other
studies as well where information about the parameters’
pdf’s are known.

Comparison of model uncertainty evaluation techniques:
rainfall-runoff analysis
Rainfall-runoff analysis may be used for generating
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estimates of the peak flow rates, @, needed for the design
of flood control channels, and estimates for a time
distribution of runoff volume for the design of detention
basins.

The hydrologic model (described in Section II) was
applied to a severe storm condition which occurred on

by the Rosenblueth technique. Even with the same
computational effort (8 trials), the Monte Carlo
technique outperformed (for this study) the Rosenblueth
technique,

Y. CONCLUSION

March 1, 1983 in southern California. This storm resulted .
in various rainfall intensities ranging between 10-year and

" 200-year return frequencies, causing severe flooding
damage throughout the region. The variation in rainfalls
is reflected by Fig. 13 which shows the rain gauge
measured time-distributions in the Los Angeles area. As
can be seen, the variation in rainfall is significant even ot
though the storm was of a rare return frequency. Stream
gauge data was also available at several catchments.

Advances in hydrologic modelling techniques typically
involves the incorporation of higher complexity into the
hydrology model by use of hydraulic submodels. With

T RRTR I ] G
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o
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i

Consequently, it is feasible to prepare a rainfall-runoff | it
analysis using the previously described hydrologic model.
It is noted that this storm was not included in the data set |

used to determine the parameter calibration of the
hydrologic model. It is also noted that in this study effort,
the focus is upon the modelling of a particular storm event qf
rather than the development of a probabilistics design

FLowmaTE
ersy 30001

storm runoff hydrograph for flood control purposes. =

Hence, the nested design pattern (see Section II) used for = <L .. P il |
flood control design purposes is replaced, in this e

application, by the actual measured storm pattern Fig. 14a. Rosenblueth analysis of the March 1, 1983

recorded at the available rain gauges.
The subject model is based upon S5-minute unit
intervals for both rainfall and runoff. Assuming each 5-

storm for the Compton Creek watershed

minute unit interval of runoff to be a random variable, an 5 ! i ]
uncertainty analysis can be prepared for the entire runoff T & I

hydrograph as a collection of 5-minute unit interval #

random variables. Such an analysis was prepared for two

catchments using the parameter value histograms of Figs B~ o i

- 1 STANDASD BEVIATION BANG WiETM

2, 6, and 10, for both the Rosenblueth and Monte Carlo s000f oo e
techniques. For comparison purposes, additional studies ;
were also prepared using the Monte Carlo approach, but
with successively larger sample sizes. A comparison of .
results in the estimates of Alhambra Wash and Compton
(2) Creek of the several peak flow rate statistics are 2
contained in Table 5. Figs 14 and 15 show the modelling
outcomes developed from the two uncertainty analysis
techniques considered.

As with the previous application, the Monte
Carlo technique provides in general, a ‘better’ estimate
for the mean and standard deviation than provided
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Fig. 14b. Monte Carlo analysis of the March 1, 1983
storm for the Compton Creek watershed

Table 5. Comparison of Rosenblweth and Monte Carlo techniques in modelling March 1, 1983 storm for two catchments

Monte Carlo

Watershed runoff hydrograph Rosenblueth n=8§ n=>50 n=100 n=500

5-minute interval no. 4] s 1] s Q s 0 s 4] s
82 2511 491 2303 365 2155 362 2101 339 2086 336
Afhanibra 109 6486 858 5758 864 5444 798 5329 713 5305 739
Wadh 152 2618 530 2404 338 2285 315 2227 302 2211 293
234 5602 1263 5218 1154 4740 1170 4600 1088 4535 1058
271 1585 443 1521 343 1387 320 1342 307 1327 295
81 1828 647 3583 681 3279 740 3171 630 3145 656
Comaton i) 15 3984 784 4232 650 4036 513 3942 465 3919 436
- (g 151 2570 451 2717 250 2637 195 2621 189 . 2616 177
ek | 233 946 257 1507 184 1428 191 1417 182 1410 181
291 762, 139 1018 33 1004 60 1002 57 999 47

Notes: n=sample size.
@ =mean value.
s=standard deviation.
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Fig. 15a. Rosenblueth analysis of the March 1, 1983
storm for the Alhambra Wash watershed
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Fig. 15b. Monte Carlo analysis of the March 1, 1983
storm for the Alhambra Wash watershed

over 150 models reported in the open literature, it is still
not clear whether the general level of success afforded by
the many types of complex models provide a marked
improvement over that achieved by the more commonly
used and simpler models such as the unit hydrograph
method. Such a review indicates that it is still not clear, in
general, whether as modelling complexity increases,
modelling accuracy increases.

It is important to consider the uncertainty in a
hydrologic model, because the estimates of the peak flow
rates, 0, and estimates of runoff volume will have
significant effect on the flood design values, eg., the
design of flood control channels, and the design of
detention basins. :

In order to prepared such an analysis, a technique to
develop model outcome statistics is needed. Due to
computational effort limitations, an exhaustion study
which considers the total universe of parameter inputs is
usually precluded. Two alternatives to an exhaustion
study is a Monte Carlo <‘'mulation and the more recently
advanced Rosenblueth technique. Although the
Rosenblueth technique potentially affords a significant
savings in computational effort over that usually needed
with a Monte Carlo analysis, it was found that in this
application the Monte Carlo technique was superior in
accuracy, for even the same computational effort.
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