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ABSTRACT

The estimation of the location and propagation of a plume in a
groundwater basin is an important problem in contaminant
transport engineering. Typically, finite element models are
used to develop solutions as to the location and movement of
the plume in the basin. In this paper, the Complex Variable
Boundary Element Method or CVBEM is used to develop streamlines
and plume shape of the moving contaminant. Arrival times of
the contaminant at pumping wells can be estimated, and the
choice for the location of injection wells analyzed by use of
this method. The CVBEM program is user-interactive, and can
be operated on IBM compatible personal computers.

INTRODUCTION

Potential flow theory may be used to depict streamlines of the
groundwater flow for analyzing the extent of subsurface contami-
nant movement. Especially in the preliminary study, the
potential flow theory can be used to determine whether or not

a more sophisticated study based on a long period of observation
and expensive data collection is required.

However, when time-dependent boundary conditions are present and
dispersion-diffusion effects are significant, the steady state
modeling approach becomes inappropriate. Another limitation of
this technique is that it is not so suitable as to accommodate
nonhomogeneity and anistropy within the aquifer, because the
complexity rapidly exceeds the modeling capability of the
analytic function technique.

Due to the limitation of readily available analytic functions,
many flow field problems are not easily solvable. The CVBEM,
however, provides an immediate extension. That is, potential
flow theory is utilized to solve analytically the groundwater
flow field as provided by sources and sinks (groundwater wells
and recharge wells), while the background flow conditions are
modeted by means of a Cauchy integral collocated at nodal

points specified along the problem boundary. The technique
accommodates nonhomogeneity on a regional scale (i.e.,
homogeneous in large subdomains of the problem), and can include
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spatially distributed sources and sinks such as mathematically
described by Poisson's equation. Oetail deve1o?ments of the
CVBEM numerical technique are given in HromadkalsZ and
Hromadka and Yen 3»4,

For steady state, two-dimensional, homogenecus-domain problems,
the CVBEM devejops an approximation function which combines an
exact solution of the governing groundwater flow eguation
(Laplace equation) and approximate solutions of the boundary
conditions. For unsteady flow problems, the CVBEM can be used
to approximately solve the time advancement by implicit finite
difference time-stepping analogous to domain models.

In this application, only the steady state two-dimensional flow
problem will be considered in a homogeneous domain. In other
words, application of the CVBEM contaminant transport model is
restricted to steady state flow cases in which solute transport
is by advection only.

Governing Equations
For steady-state Tlow, the equation of continuity can be
expressed as

V-pg=0 (1)

S
where V is the velocity vector V (u,v,w} and p i5 the fluid
density. If density variation is negligible, Eq. (1} reduces to

-

7eV=0 ' (2)
The velocity vector is related to the Darcy Law as follows:
V= -k, T (3)

-
in which v ¢ is the gradient of total potential of head, having
the dimension of energy per weight, or length. Substituting the
Darcy equation, (3), into the continuity equation. (2}, one
obtains

velk, T0l=0 (4)

If, in addition, Ky is constant, (for example, water of a con-
stant viscosity in a homogeneous sand), Eq. (4) reduces to the
Laplace equation

v2¢ = 0 (5)

The CVYEEM continues by using (8) to develop m egquations as a
function of the m unknowns associated with the undetermined _
nodal values of either ¢ or ¢ at each node. That is, w=¢ +1§
where $ and  are nodal values of the potential and stream
functions respectively.
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Flow Field Model

Due to the linearity of Laplace’'s equation, one can superimpose
as many flow components as required to obtain the general expres-
sion for the complex velocity potential of the entire system. A
potential function F(z) which described one of several point
sources of contaminant recharge, together with some groundwater
discharging wells, combined with a uniform regional groundwater
flow regime, is developed that exactly satisfies the Lapiace
equation in domain © by

N no Q.
Flz) = wiz) +} —Ln (z '21)’ 2z e {6}
i=1 27T

which Qi is the discharge from well i (of n} located at z4 fi.e.
(+) for a sink; (-) for a source], T is the transmissivity of a
confined aquifer, and w(z) is a CVBEM approximator representing
the background flow field. 1In Eq. (6), F{z) must satisfy the
boundary conditions

£E({z) = 6¢{z) + i{1-8) p{z), z T (7)

where & =1 if ¢(z) is known; & =0 if y(z) is known; and £{z} is
a boundary-condition distribution along T.

The source and sink terms inciuded in Eq. (6) represent an exact
model for steady state flow. Thus, £{z) must be modified in
order to develop a CVBEM a(z) by

gx{z) = £(z) - E —1 Ln (z —21.), zeTl (8)

=1 2n7

The flow field is then determined by collocating w{z) at each
node zj el according to the boundary-condition distribution of
£*(z).” The resulting amalytic function F{z) describes the CVBEM
model. 1In Eq. {8), £X(z) is defined according to the real and
imaginary parts as given in Eq. (7).

Poisson Equation

Given a continuous distribution of sources (such as from precipi-
tation) in a flow field in domain @, the steady state flow model
must be extended to accommodate the Poisson eguation, with k as

a constant.

3% 9%
—+ — =k {9}
Iaxt Ayl

Equation (9) can be modeled by choosing a particular solution
¢p such that
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32¢p 3%
+ =k {10)
2 ayZ

0X

For example, ¢, = %—(xz + y?) is a suitable choice {an infinity
of other particular solutions are available). After choosing
¢p» the boundary condition function £E(z) is modified in order to
dBvelop B{z) by

n Q;
e*(z) = E(z) - ] —=ln (z-2z,) -9 (2}, zeT (11)
¥l 2nt P

The CVBEM approximator w(x) is collocated at nodes z: with
respect to the £*(z) function. Thus, the Poisson eqﬂation is
exactly solved by

Q.
Flz) = 8l2) + ] —-tn (z-z)) + (2) (12)
i=1 25T P

The above procedure can be extended to the relation

— F = f(x.»)') {13)

by choosing a ¢, such that Eq. (13) is satisfied, and proceeding
with the deve]ogment of an appropriate CVBEM w{z) in the same
way.

Solute Transport Model

The solute transport mechanism is assumed only applicable to the
modeling of steady state, advective contaminants, for those which
move with the groundwater flow. The solute-transport process is
approximated by calculating point-flow velocities given by the
derivative of the potential function ¢(z) where

¢(z) = Re F(z) (14)

The extent or boundary of the subsurface contamination is then
evaluated according to point values of the flow velocity and the
time increment selected. Point flow velocities are estimated as

el
ax
¢
v = -K ——-/90 (15b)

ay
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where {u,v) are {x,y)-direction soil-water flow velocities, K is
the saturated hydraulic conductivity, and 6, is the effective
porosity of the aquifer material material. (A retardation factor,
r, can be included in the denominator of Eq (15) in order to
account for contaminant transport velocities being less than the
actual field velocity or specific discharge.)

The velocity of a contaminant particle is used to estimate the
distance traveled along a flow field streamline by the
approximations

dx*

—th-= u (15&)
dy*

—HE-= v {16b}

where in the above (x*, y*) are the coordinates of the subject
contaminant particle.

CVBEM (Using the Collocation Method)

The CVBEM has been shown to be a powerful numerical technique
for the approixmation of properly posed boundary-value problems
involving the Laplace equation (Hromadka?). The keystone of the
numerical approach is the integral function

- 1 J 6(z)dz
N(Z) = e——
: 2mi

(17}
g -z

where I' is a simple closed contour enclosing a simply connected
domain Q; ¢ is the variable of integration with gel; 2z is a
point in Q; and the direction of integration is in the usual
counterclockwise {positive) sense (fig. 1). The function G(z)
is a global trial function which is continuous on I'. The linear
global trial function is defined by

m
B(z) = jgl 85 (Ny iy * Nyyy dyy) (18)

where §5 = 1 if g ely, and &5 = 0 if £ ¢ry. 1In this case, the
functiohs Ni and N4 j+1 are the usual linear basis functions.
From the deFinitioh of G(z) we have

iG(c)dr. i {G(«:)d; i r§ Ja(c)dz;

13

(Nj Wy +Nj+1‘“j+1)d§
r-2z Jj=1 £-2z j=1 r -z

. . Tr.
J J J (19)

L~z
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Figure 1. CVBEM Boundary Discretization

T, = Boundary element linking
nodes j and j+1;

25 = Nodal coordinate for node j,
(241 = 2905

Natural boundary

T

The CVBEM approximation function for linear (straight-line inter-
polation) basis functions results in the complex function

w(z) = jgl cj(z —zj) Ln (z -zj) {20)

where the c4 are complex constants cj = aj + ibj; z; are nodal
points (j ="1,2,+++,m) defined on the proﬂ]em boundgry T (simple
closed contour); and Ln(z -z} is the principal value complex
logarithm function with brangh cuts specified to intersect T
only at zi(see Fig. 2). Given m nodes specified on I';, we neces-
sarily kndw either % or § {not both) at each Zjs j=132,"++,m.
Then to estimate the remaining m nodal values,“iw(z) is collocated
in the form of a Fredholm equation which resulting in the soiu-
tion of fully populated, square matrix system.

CVBEM (Using the L, Norm)

The CVBEM model is now expanded as a generalized Fourier series-- .

eliminating the matrix solution entirely. The cj are calculated

in the L2 norm sense by finding the best choice Sf cs to minimize -

the mean-square error in matching the boundary condi%ion values
continuously along T. Notation is used for the known and unknown
function values along T.

wli) = a5, 2) + 82,(c)
A A el {21)
w(z) = ag (g) + 2§ (c)
where w}z; is the solution to the boundary value problem over

QUr:s o(z) is the CVBEM approximation over Q UT; A is a
descriptor function such that A = 1,1 depending whether the

PR I
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BRANCH=-CUT
FROM Z,

Figure 2. The Analytic Continuation of u(z) to the
Exterior of QUT

Note: Branch Cuts along T' at Nodes Z;

associated &, or £y function is the real or imaginary term; and
r is notation for the case of zeT'. Then the objective is to
computer the Cj which, for a given nodal distribution on T,
minimize

r

The CVBEM approximation function of (20) can be written as

N m
w{z) = jzl cjfj (23)
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where fj = {z-z3) Ln {2z —zj). The Gram-Schmidt procedure can be
used to orthogong]ize the fj such that

m
o{z) =} v;94 (24}
4,759
J
where y; are compiex constants and

(9129, ) 3ok
9:,9,) = [ g,9, dI = 7 {25)
77k 7k 0, J #k

T

In (25), (gj,gk) is notation for the inner product.
The boundary conditions on I’ are given by £, where ¢(z) is known

continuously on contour ', and @(z) is known continuously on T
where Ty + Ty, =T and Ty ()T only at nodal points. The Ty an
ge co*p %e ﬁ

Ty can osed of a finite number of contours. Then the vy
are computed which minimize
f
1= J (6(c) - Re Zyjg,)ar + (p{c) - Im Zy;q,)dr (26)
T
¢ Ty

Because the 9; are orthogonal, the Y; are directly computed by
. = 0+ R 27
Y5 = (80033 (35085 (27)

Then the best approximation (in the L, norm) is given by

m

The ¢; are then computed by back-substitution of the y;g; functionms
into %he c-fj functions. It is noted that by this approach, the c
are computgd directly without the use of a matrix system generation
or matrix sclution.

Both models show compatible results for the following groundwater
contaminant problems.

Application 1. Figure 3 shows a completely penetrating groundwater
weil {discharge 50 m®/hr) located at the coordinates (300, 300) in
a homogeneous isotropic aquifer of thickness 10 m. Contaminated
water is being discharged (recharge of 50 m®/hr) at a second well
{injection well) located at the coordinates {300, -300) with a
distance of 848.5 m from the supply well (discharge well).
Effective porosity is 0.25, saturated hydraulic conductivity is
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1 m/hr, and negligible background groundwater flow is assumed.

Retardation is assumed

Depicted in Fig. 3 are
corresponding to model
ally, the CVBEM model
of time 4.33 years for
which agrees well with
years.

to be 1.

the limits of groundwater contamination

times of 0.5, 2, and 4 years.

Addition-

predicts a first arrival of contamination
injected water to rga

the Javendal et al.

ch the pumping site
estimate of 4.3

Application 2. Two discharge wells are added at the coordinates
(+500, +500) in application 1.

front at 0.5, 2, and 4 years.
taminant water to reach the middle discharge well (-300, 300),
and about 5.58 years for the contaminant water to reach the other

two production wells.

DISTANCE (m)
o
¥

~ | ;
“DISCHARGE WELL

500
1000 1 i L i
4000 -300 -] 200
DISTANCE {m)

Fig. 3. Flowline pattern and front
positions between injection
and production well for

application 1

Application 3.

Figure 3 depicts the contaminant
It takes 4.32 years for the con-

o0 1 T I
00 b= R
‘l
!
3 i
¥ |
1¥ Q- ‘|
:
=R
800 = <
K‘DISEH.ARGE WELL-
- .
i i L 1 N l L
1999055 s o 30 ™
DISTANCE (m)
Fig. 4. Flowline pattern and

front positions be-
tween injection and

three production wells

for application 2

a single pumping well whose strength equals to 50 m*/hr at (0,0}
near a landfill site with an equipotential boundary ¢ = 2 m along

x = =1000.
pumping well.

It teok the contaminant front 8.96 years to reach the
Two additional injection wells were installed at

(-500, 250) and {-500, -250) with strength equal to 10 m®/hr, to
retard the contaminant front.
movements of these two case problems.

Application 4.

Figures 5 and & depict the front

In this problem, a liquid-waste disposal pond with

a diameter of 100 m fully penetrates the aquifer is added to

application 3.

The center of this pond has coordinates of

Let's consider the steady flow pattern producted by
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(500, 500} on the Cartesian system shown in Fig. 7.

Liquid

Tevel in the pond is such that the volume rate of leachate leay-
ing the pond is about 20 m*/hr.
years for the contaminant liguid to reach the discharge well

from the left boundary and from the disposal pond, respectively,

DISTANCE (m)

:
g

Fig. 5.

DISTANCE (m)

Flowline pattern and front Fig. 6. Flowline pattern and

positions between equi-
potential boundary and
discharge well

It takes 15.7 years and 7.3

800 1=+

DISTANCE {(m)
-]

2

-noﬂq‘om

DISTANCE {(m)

front positions between
retarding wells and pro
duction well for
application 3

L= A ] ™
Ja— -,
| "~ DISPOSAL B
i I POND
soq LL-L -
E = -
= S years
%] o J o -
= S DISCHARGE WELL
£ i
. (] k
L
]
'l
300 - P e -
o0 | PO N
o 200 Koo
DISTANCE (z)

Fig. 7. Flowline pattern and front
positians for application 4
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Summary and Conclusions

In this paper, the CVBEM collocation and L, norm methods are used
to develop models of steady-state, advective, contaminant trans-
port in ground-water. Because with the CVBEM approach the Laplace
and Poisson partial differential equations are solved exactly, all
modeling error occurs in matching the prescribed boundary
conditions.

For the same nodal displacement, on the domain boundary both models
show compatible results in matching the boundary conditions. It
has been found that less nodal points and execution time for the
collocation method achieved the same accuracy of stream and
potential functions than the L, model that used more nodal points
and execution time. Therefore, a collocation method is recommended
for the regional goundwater contaminant problem.

Because the modeling technique is based upon a boundary integral
equation approach, domain mesh generators or control-volume
{finite element) discretizations are not required. Nodal points
are reguired only along the problem boundary rather than in the
interior of the domain.

Consequently, the computer-coding requirements are small and can
be accommodated by many currentiy available home computers that
supports a FORTRAN compiler. Although this study focuses upon
groundwater flow problems, the numerical anaiog can be extended
to other equivalent problems such as involved in heat and mass
transport in homogeneous domains.
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