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Many important engineering problems fall into the category of linear operators, with
supporting boundary conditions, In this paper a new inner product and norm are
developed that enable the numerical modeler to approximate such engineering prob-
lems by developing a generalized Fourier series. The resulting approximation is the
““best’’ approximation in that a least-squares (L') error is minimized simultaneously
Jor fitting both the problem’s boundary conditions and salisfying the linear operator
relationship (the governing equations) over the problem’'s domain (both space and
time). For slow-moving interface phase change problems where the heat flux balance
can be adequately described by the Laplace equation, the generalized Fourier series
techaique results in a highly accurate solution.

INNER PRODUCTS FOR THE SOLUTION
OF LINEAR OPERATOR EQUATIONS

The general setting for solving a linear operator equation with boundary values
by means of an inner product is as follows. Let {2 be a region in R,, with boundary
T" and denote the closure of ) .by cl({). consider the Hilbert space L*(cl({}),du),
which has inner product (f,g) = ffg dun. (This is a real Hilbert space. For the com-
plex version, use the complex conjugate of the function g in the integral.) The way
to construct the necessary inner product for the development of a generalized Fourier
series is to choose the measure p correctly; that is, let o be one measure w,; on )
and another meaure ., on I'. One natural choice for a plane region would be for
10 be the usnal two-dimensional Lebesgue measure dV on  and p, the usual arc
length measure ds on I'. Then an inner product is given by {1]

(f,g}szgd‘/“r ffgds (1)
n I

Consider a boundary-value problem consisting of an operator L defined on do-
main D(L) contained in L*(£}) and mapping into LY{2), and a boundary condition
operator 8 defined on a domain D(B) in L((1) and mapping into LY. The domains
of L and B must be chosen so that at least for fin D(L), Lf is in L({}), and for f in
D(B), Bf is in L*I'). For example, we could have Lf = Vf and 8f(s) equal to the
almost everywhere (a.e.) radial limit of £ at the point s on I', with appropriate do-
mains.
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The next step is to construct an operator T, mapping its domain D(T) = D(L)
N D(B) into L7 (cl(0)) by (e.g., see [2])

THx) = Lftx) forxin Q2

2
Tf(s) = Bf(s) forsonT @
From Eq. (2) there exists a single operator T on the Hilbert space L3cl()) that
incorporates both the operator L and the boundary conditions B and is linear if both
L and B are linear. An application of this procedure using the complex variable
boundary element method (CVBEM) is given in Hromadka et al. [3]. In that study,
Lf = Vf and Bf is the radial limit of £ on I". Other applications are contained in
Hromadka et al. [4, 5].

Consider the inhomogeneous equation Lf = g, with the inhomogeneous bound-

ary conditions Bf = g,. Then define a function g on cl({}) by

2= on £}
g§8= 8 onI

Then if the solution exists for the operator equation
Tf=¢g

the solution f satisfies V°f = g, on (1, and f = g, on [ in the usual sense of meaning
that the radial limit of fis g, on I'. One way to attempt to solve the equation Tf =
g is to look at a subspace D, of dimension n, which is contained in D{T), and try
to minimize [Tk — g|| over all the & in D, as developed in Hromadka et al. [6].

Purpose of Paper

In this paper the mathematical development of the approximation procedure
and the application of the technique to a heat transfer problem are presented.

A detailed derivation of the technique and the application to several simple
problems are given in Hromadka et al. {4, 5]. Because this technique shows con-
siderable promise in many engineering applications, the computational effort in-
volved, which is greater than that needed with a finite-element or finite-difference
method solution, may be offset by the mathematical attractiveness of a convergence
(in the £* sense) that can be linearly programmed.

Definition of Inner Product and Norm

Given a linear operator relationship
Lidy=Hh on(l, b=d¢, onl (3)

defined on the problern domain £ with auxiliary conditions of ¢ = ¢, on the bound-
ary [ (see Fig. 1). Here {) may represent both time and space, and &, may be both
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Fig. 1 Definition of problem domain {}
and boundary I'. (Note: &, can include the
temporal term boundury of the initial con-
dition specification.)

initial and boundary conditions. It is assumed that the working space is sufficiently
restricted (see below) that ¢ is a unique a.e. solution to Eq. (3).

Choose a set of m linearly independent functions (£}, and let ™ be the m-
dimensional space spanned by the elements of (f)". Here the elements of { 7 will
be assumed to be functions of the dependent variables appearing in Eq. (3).

An inner product is defined for elements of §” by (u,v), where for u, v € §"

(s,v) = j uv dl + J LuLv dQ) (4)
F a

It is seen that (x,v) is indeed an inner product, because for elements «, v, w in S™

(e, v) = (v,u)

(ku,v) = k(u,v) for L a linear operator

(u + v,w) = (u,w) + (v,w) for L a linear operator
() = @) dl + Jo(Lu)* dQ = 0

() =0=>u=0ae. onTl, and Lu = 0 a.e. over ()

L o h o

‘These restrictions on the operator L imply that L is linear (see parts 1 and 2 of the
above definition); if Lu = 0 a.e. over Q and u# = 0 a.e. on I', this must imply that
the solution u = [0], where [0] is the zeto element over U I'; and for the inner
product to exist, the integrals must exist. For the inner product of Eq. (4) to exist,
the integrands must be finite. In addition, each element u € $™ must satisfy [ru® dT’
< %,

For the above restrictions on L and the space S™, the inner product is defined
and a norm, || ||, immediately follows:

[le| = (ae,20)'72 (5)

The generalized Fourier series approach can now be used to obtain the “best” ap-
proximation ¢,, € $” of the function ¢, using the newly defined inner product and
corresponding norm presented in Egs. (4) and {5).

The next step in developing the generalized Fourier series is to construct a new
set of functions {g;)" that are the orthonormal representation of the ( £
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Orthonormalization Process

The functions {g;}" can be obtained by the well-known Gramm-Schmidt pro-
cedure {7, p. 43}, using the newly defined norm of Eq. (4). That is,

f o f
LAl
()
o = L = fro8)81 = = (fraBn=1)8m1]
" "fm - (frmgl)gl - (fm-gm—])gm—ln
Hence, the elements of (g;)™ satisfy the convenient properties that
_Jo ik

In a subsequent section a simple one-dimensional problem illustrates the orthonot-
malization procedure of Eq. (6).

The elements (g;)" also form a basis for §™ but, because of Eq. (7), can be
directly used in the development of a generalized Fourier series where the computed
coefficients do not change as the dimension mr of (g;)" increases. That is, as the
number of orthonormalized elements increases in the approximation effort, the pre-
viously computed coefficients do not change. Each element ¢, € $” can now be
written as

d)m = Z 'Y;g, (b)n E S"' (8}
=1
where v, are unique real constants.

Generalized Fourier Series

The ultimate objective is to find the element ¢,, € $” such that [, — & is a
minimum. That is, we want ||d,, — &[] to be a minimum, where

2

m 2 m
“‘bm - (buz = f (E ngj - d)b) dr + f (L E 'ng} - L(b) dﬂ (9)
r \j=1 4] J=\

Remembering that L is a linear operator and L = f by the problem definition of
Eq. (3}, we have that Eq. (9) can be rewritten as

-

b — & = f (2 Yigi ¢,,) dr +f (2 v,Lg, -f) d (10)
LIRS @ A

Thus, minimizing [[b, ~ &|° is equivalent to minimizing the error or approximating
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the boundary conditions and the error of approximating the governing operator re-
lationship in a least-squares (or L?) sense. Because the (g;)™ are orthonormalized and
the inner product { , } is well defined, the coefficients v; of Eq. (8) are immediately
determined by the generalized Fourier constants y¥, where

v=qgd j=12,...,m (11)

Thus

ox = i, = > (2.0 (12)
=1 i=1

is the “best” approximation of &, in the space 5”.
Because the generalized Fourier series approach is used, several advantages
over a matrix solution (for the generalized Fourier series coefficients) are obtained:

t. The need to solve large, fully populated matrices, which arises when solving
the normal equations, is eliminated.

2. The instability that typically arises in a matrix solution for Fourier coeffi-
cients (i.e., higher powers of the expansion basis functions assumed) is
eliminated.

3. The generalized Fourier series coefficients do not change as additional func-
‘tions are added (i.e., as the dimension m of the space §” is increased).

4. Generalized Fourter sertes theory applies; hence, error analysis can be con-
ducted using Bessel's inequality, as discussed in the next section.

Approximation Error Evaluation

Due to the generalized Fourier series approach and the definition of the inner
product, Bessel's inequality applies. That is, for any dimension m

(&,0) = D (g,0)7 = >, 4} (13)
j:_l J=1

where

(¢.¢)=J(¢)3dr+f (L¢fdn=J’¢3a‘1“+ ffz d(} (14)
D N r 1}

Equation (14) is readily evaluated and forms an upper bound 1o the sum of (g,,9)
as the dimension m increases. Consequently, one may interact with the approxi-
mation effort by carefully adding functions to the (f)" in order to best reduce the
difference computed by Bessel's inequality. The technique of reducing Bessel's in-
equality can be linearly programmed by choosing additional basis functions that pro-
vide the greatest reduction in Eq. (13) from the set of basis functions available.
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APPLICATION TO SLOW-MOVING INTERFACE PHASE PROBLEMS

Many freezing /thawing phase change situations fall in the category of heat
transfer problems where the heat flux along the phase change boundary is adequately
estimated by assuming the Laplace equation. For example, for soil-water phase change
in freezing soils, Hromadka and Guymon (8] successfully used the Laplace equation
to compute heat flux quantities along the freezing front of a soil columa in order 1o
propagate the front due to soil-water phase change. In another application, Hromadka
(6] used the CVBEM to extend the soil-water phase change solution to two dimen-
sions. A distinct advantage afforded by the CVBEM solution is the error analysis
by use of the “approximate boundary™ technique (see Hromadka [9]).

In this paper the CVBEM trial functions are used to eliminate the second in-
tegral in the inner product of Eq. (4). Thus,

(u,v) = j wy dl’ (15)
r
becomes the inner product for the generalized Fourier series development.

Modeiing Approach

The modeling approach (the governing equations and modeling assumptions
are given in [6]) initiates by developing CVBEM approximators [10] @,(z) and &/(z)
for the frozen and thawed domains, respectively. The numerical technique deter-
mines the analytic function @(z) that satisfies the boundary conditions of either nor-
mal flux or temperature specified at nodal points located on the problem boundary
I'. Because @z} is analytic throughout the interior domain  enclosed by T', the real
and imaginary parts of &(z) + il(z) both exacily satisfy the Laplace equation over
Q. : :

For the steady-state condition, the governing heat flow equations reduce to the
Laplace equations. Consequently, an &(z) determined for both the frozen and thawed
regions satisfies the Laplace equations exactly, leaving only errors in satisfying the
boundary conditions. To develop a CVBEM steady-state solution, an &(z) is devel-
oped for each of the separate regions. Initially, ®{(z) and &{z) are defined by

oz =0 z€Q
B = &) : € _ ' {16)

where {} = {1, U {}, is the global domain, and the first-order CVBEM approximators
are based on the entire domain. This procedure results in simply estimating the 0°C
isothermn location for the homogeneous problem of () being entirely frozen or thawed.
Let C' be the contour corresponding to this 0°C isatherm.

The second iteration step begins by defining (1} and ()] based on the mutual
boundary of C'. CVBEM approximators &; and &} are then defined for )} and
Q;, respectively. . i

Examining the stream functions @} and 47, estimates of the discrepancy in
matching the flux rates along the interface between {}, and {); can be evaluated. The
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Fig. 2 lerative estimation of freezing
front location.

wf function is now used to determine the next location of the 0°C isotherm. This is
accomplished by determining a new &F with the stream function values of &; (mod-
ified by conductivity) superimposed at the nodal values of C'. Next, a new 0°C
isotherm C* is located for &} The next estimated tocation for the 0°C isotherm, C?,
is located by averaging the v coordinates of the nodal points between C' and C*.
Figure 2 illustrates this procedure, The third iteration step proceeds by defining (7
and ()] based on the mutual boundary of C?, and the above procedure is repeated.

The iteration process continues until the final estimates of £}, and (), are de-
termined with corresponding @ and &, approximators such that

i b,
e Lec an
ds ds

Using the Approximate Boundary

As discussed previously, the subject problem reduces to finding a solution to
the Laplace equation in £}, and {},, where (), and Q, coincide along the steady-state
freezing front location C. The CVBEM develops approximators @, and &, that satisfy
the Laplace equation over (), and (), respectively. Consequently, the only approx-
imation error occurs in matching the boundary conditions continuously on I, T,
and C. The generalized Fourier series develops the best CVBEM approximation that
minimizes the norm in Eq. (14), where, because of the use of analytic functions as
basis functions,

(,d) = f &’ dl (18)
T

To evaluate the precision in predicting the freezing front location, an approx-
‘imate boundary is determined: for each subproblem domain of {},, {),. The approx-
imate boundary results from plotting the ievel curves of each CVBEM approximator
(i.e., @,@,) that correspond to the boundary conditions of the problem.

For example, in €}, the thermal boundary conditions for a roadway embankment
(Fig. 3) are defined on the problem boundary T, by

b = —10°C z € 1op surface
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Fig. 3 Approximate boundary T, and closeness of fit to the problem boundary 1.

& =0°C z € freezing from
=0 7 € left side (symmetry)

¥ = constant z & right side (zero flux)

After developing an @, and ), from the CVBEM, the approximate boundary f} is
determined by plotting the prescribed level curves. Figure 3 also includes ff super-
imposed on [';. Because @, is analytic within the area enclosed by the approximate
boundary and satisfies the prescribed boundary conditions on the boundary [/, then
@, 1s the exact solution of the boundary-value problem redefined on f s and its interior
£}, Should I, completely cover [',, then &, is the exact solution to the subject prob-
lem,

Thus, the CVBEM modeling error is directly evaluated by the closeness of fit
between {; and I';. However, in this application the approximate boundary concept
is used not only to examine the closeness of fit to the boundary conditions but also,
and possibly more crucial, the closeness of fit of matching the estimated freezing
front location between (), and (2, along the contour C. Should (), and {1, match C
continucusly, then dy and &, equate thermal flux continuously along C.

f t P=-l0 MAXIMUM DEPARTURE
12 ~ T — §5=4.0cm
o — re \ : ]
8 — & = CONSTANT
6 ~— ? Qf

> ®=-20
4 — KC(¢=O)
2 — " = CONSTANT
o Qr Ty
{METERS)
ﬁ} D225

Fig. 4 Application of the CVBEM geothermal model to predict sicady-state conditions.
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Applications

Figure 3 depicts an application of the geothermal model for a roadway em-
bankment problem and the use of the approximate boundary. Figure 4 illustrates the
two-dimensional steady-state freezing front location on a geothermal problem in-
volving a buried subfreezing 3-m-diameter pipeline. Examination of the approximate
boundaries indicates that a good CYBEM approximator was determined by use of a
26-node CVBEM model. The maximum departure 8 between the approximate
boundaries and the problem boundary I occurred along the top of the pipeline and

Maximurmn deviation
less than 1.0 cm

Tune (hours)}

L 4 Nodal point

True boundary
—————————- Approximate boundary
Fig. 5 Evolution of approximate boundary for time-stepped problem solution

(sce Fig. 3 for domain definition). (@) Nodal point; { ) true boundary;
{— — —) approximate boundary.
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had a value of approximately 3.5 cm. The average departure & is estimated as less
than 1 cm. The freezing front maximum departure is approximately 4 cm and oc-
curred at the problem’s right-hand side. Average departure on C is less than 2 cm.

The example problems presented illustrate the usefulness of the CVBEM in
predicting the steady-state freezing front location for two-dimensional problems. Pos-
sibly the most important result is the accurate determination of the approximation
error involved in using the CVBEM. The usual procedure in estimating the freezing
front is to use a finite-element or finite-difference numerical analog. A hybrid of
these dornain methods includes a variable nmesh to better accormmodate the interface.
However, none of these methods provides the error of approximation. In comparisen,
the CVBEM model provides the approximation error not only in matching the bound-
ary conditions but also in predicting the interface location between (1, and €}, And
this error is simple to interpret as an approximate boundary displacement from the
true problem boundary and the dispilacement between (), and (, along the freezing
front contour C.

Time-Stepped Approximate Boundary

By plotting the several CYBEM-generated approximate boundaries, the time
evolution of the approximation error is readily seen. Figure 5 demonstrates the CVBEM
modeiing error in the time sequence of approximations developed for the pipe so-
lution isolated from the problem in Fig. 4. From Fig. 3 it is concluded that the
computational effort used in the CVBEM analysis is adequate for this case study.
Figure 5 shows a variation in the approximate boundary location as the solution
progresses in time; however, the variation is less than 1.0 em in magnitude.

CONCLUSIONS

In this paper the CVBEM basis functions are employed in a generalized Fourjer
series in which the inner product of Eq. (14} is used to determine the basis function
coefficients. Because analytic functions are used, the inner product reduces to a least-
squares fit of the boundary conditions. The CVBEM is used to approximate a slowly
moving Interface between two quasi-potential problem solutions. The case study con-
sidered is soil-water phase change in freezing soils. The approximate boundary tech-
nique demonstrates the CVBEM modeling error in achieving the prescribed boundary
conditions as the stepped advance in time is approximated.
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