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The theory of generalized Fourier Series can be applied to the approximation of linear operator
relationships. To demonstrate the computational results in using this approach several example
probiems where analytic solutions or quasi-analytic solutions exist are used for the testing the general-
ized Fourier Series technique. Applications include two-dimensional problems involving the Laplace
and Poisson equations, tests for variation in results due (o inner product weighting factors, and

application to nonhomogeneous domain problems.

INTRODUCTION

INNER PRODUCTS FOR THE SOLUTION OF LINEAR
OPERATOR EQUATIONS

The general setting for solving a linear operator equation
with boundary values by means of an inner product is as
follows: let & be a region in R™ w1m’bqu@ary T and
denote the closure of £ by <l(£2). Cons@ep‘meﬂiﬂbert
space L3(cl(R), dit), which has inner pfoduct (f,g)= [fg du
and where du is the measure defined below. (This is a real
Hilberr space. For the complex version, use the compiex
conjugate of the function g in the integral.) The way to
construct the necessary inner product for the development
of a generalized Fourier Series is to choose the measure u
correctly: that is let u be one measure g, on §2 and another
measure fy on . One natural choice for a2 plane region
would be for g, to be the usual two-dimensional Lebesque
measure dV on £ and for u; to be the usual atc length
measure ds on I". Then an inner product is given by’

{-f.g)=j.fgdlf+jfgds e

k2 r

Consider a boundary value problem consisting of an
operator £ defined on domain D(L) contained in L*(Q2)
and mapping into L*(%2), and a boundary condition opera-
tor B defiped on a domain D(B) in L*(Q) and mapping it
intc L*("). The domains of L and B have to be chosen at
least so that for fin D(L), Lf is in L¥(§2), and for fin D(B),
Bf is in L*(IM. For exampie we could have Lf = v2f, and
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Bf(s) equal the almost everywhere (a.e.} radial limit of fat
the point s on I", with appropriate domains.

The next step is to construct an operator T mapping ils
domain D(T) = D(L) N D(B)into L(cl(2)) by*

THx)=Lf(x)forxin &
(2)
Tfis)= Bf(stf%or..'{f;)n I

From (2), there exists a single operator T on the Hilbert
space L*{cl(Q)) which incorporates both the operator L
and the boundary conditions B, and which is lineas if both
L and B are linear. An application of this procedure using
the Complex Variable Boundary Element Method (CVBEM)
is given in Hromadka er af.” In that study, L= 7?fand Bf
is the radiat limit of fon T

Consider the inhomogeneous equation Lf = g with the
inhomogeneous boundary conditions Bf = g,. Then define
a function g on cI(£2) by

g=gonl2
(3)
g=gonl 3
~Then if the solution &xists for the operator equation
Tf=g¢ (4)

the solution f satisfies V%f =g, on §2, and f=g, on T in
the usual sense of meaning that the radial limit of fis g, on
I". One way to attempt 10 solve the equation Tf =g is 10
look at a subspace D, of dimension #n. which is contained
in D(T), and to try to minimize || Th —g | over all the & in
D, such as developed in Hromadka er af.?
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[n this paper, the appiication of the approximation pro-
cedure to a set of simple linear operator problems is pre-
sented. Thirteen simple but detailed example problems are
used to illustrate the approximation results obiained by
the method when appiied to practical problems. The
theoretical development of the numerical method is included
in a companion paper.’ This paper focuses on the topics
of weighting factor selection and modeling sensitivity,
effects of additional basis functions on computational
accuracy, and the effects on modeling results due to the
addition of collocation points,

SENSITIVITY OF COMPUTATIONAL RESULTS TO
VARIATIONS IN THE INNER PRODUCT WEIGHTING
FACTOR

The inner product uses a weighting factor, e, to weight the
approximation effort in satisfying the PDE and BC values
by

(u'u)=eju'vd1"+(1 — &} JLuLz;dQ
T 31

The effects of varying ¢ between 0 and 1 is shown in the
following simple application.

Example problem no. |

Let ¢ = 2x%y + y* + x + 6 where V29 =2+ 4y on the
unit square domain. Figure 1 depicts the problem domain
and boundary conditions.

First, define (1, x,y,xy,x?) to be the set of basis func-
tions, and use € = 0. The resulting approximation function
is ¢ = 2x2,

Applying the l:near operator V? on @, we obtain V39 =4.
The graph of V29 =2+ 4y on the unit square dormain is
depicted in Fig. 2. From Fig. 2, it is seen that indeed for
€=0, the best approximation for V2¢ is V2¢ =4 which
coincides to V¥¢ =4, Thus, the qué approximation satis-
fies the linear operator on the least square sense (L% for
€ = 0 for the given set of basis functions. ..,q

Second. we choose {1,x, ) as the set of bagis functions.

and use € = 1. Then the resulting approximatisit fudction is

—
-

(¢P=2x2+n+7

o

¢[‘=y2+6’1:

(0,0) 5 1,0
‘bl-\ =x+6

Figure i, Domagin and boundary conditions for example
problem no. 1
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¢=54583+ 2x~+ 1.75y. For comparison, the least squares
method can be used to minimize the function

X= J(kl thyx +kyy "¢’e)2 dr
I

with respect to parameters k4, k,, and ks along the boundary
of the unit square domain. From Fig. 1, one can write x as
follows:

1
x= J (s + ko — x — 6)2dx

x=0

+ | (kb ket kyy — 2y — ¥ — 1) dy

[i]

o (o kax Fhy— 26— x — 7Y d

+ (k1+k3y—y2--6)2dy

¥=0

Minimizing x with respect to &y, k,, and k3, we obtain
ki=154583
ky=20
ky=1.75

which verifies that the approximation {unction is the least
square fit (L% with respect to the problem boundary
gonditions.

Example problem no. 2

Let us consider a Poisson problem V3¢ =2 + 2p + 12x?
on a unit square domain with boundary conditions ¢, =
x? + y* (Fig. 3).

By Choosmg the followmg set of basis functions {x?, x?,
x? p2 ,y x12, vx? x%y?} we obtain the approximation
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function ¢, = x*+ y*fore =1 and g = x*+ §p* -+ x* for
e=0 with V3¢ =2+ 2y + 12x2 This verifies the two
extreme values of the weighting factor ¢ = 0 and 1 in satis-
fying the PDE on the domain and satisfying the BC values
on the boundary, respectively.

SOLVING TWO-DIMENSIONAL POTENTIAL
PROBLEMS

In the following are application problems and computed
results in solving the Laplace equation in two dxmensxon
Because the Laplace equation is a linear operator, the L?
approach is used.

Example problem no, 3

The flow of an idea fluid around a 90° bend can be
expressed by the analytic function

w =zt

= (x* = yh+ 2xyi

Since the state variable function ¢ = (x2 - yz) and the
streamn function ¢ = (Zxy) are of polynomial forms, the
approximation functions for the state variable and stream
functions are found to resuit in the exact solutions regard-
less of ihe value of the weighting factor e, (0 <e <1).
Figure 4 depicts the problem domain and nodal point
placement used for this application.

y

'y

¢b=nz+| )
(1,0

by =yi—a A28=a+zy+uzx2 —~—psi+y?
on

(.0

“H

L.T _—'—‘
(0,0} J oy ot -
Pp=x2

Figure 3. Domain and boundary conditions for example
problem no. 2
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Figure 4. Domain and nodal placement for example
problent no. 3
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Figure 5. Domain and nodel placemenr for examplie
problem no. 4

Example problem no. 4

Consider the St. Venant torsion problem for an equi-
lateral triangular section of Fig. 5. The analytic solution
for ¢(x, ¥) is given by

o(x,3) = (x* — 3xy%)2a + 2a%27

Figure 5 depicts the nodal placement and boundary condi-
tions for the case of ¢ = 3. The L? approximation function
is found to result in the exact solution.

Example problem no, 5

Figure 6 deplcts the nodal placement and boundary
conditions for a rhechanicai gear problem. The resulting
L? approximation function is

$=9518 + 03131x + 0.1812y + 0.7686xy + 0.2219x*
—0.2228y* — 1.018x%y + 03397y — 0.2463x%y
+0.2124x%y% + 0.2419x1°

for a weighting factor of € =0.5. Table 1 compares the
results from a Complex Variable Boundary Element Method
or CVBEM® model and the L2 approximation function for
the interior nodal points, and the defined operator relation-
ship.

Example problem no. 6 -

Ideal fluid flow arotind a cylinder has the analytic func-
tion definition of

1
wiz)y=z+~—
z

The state variable (potential) function can be expressed as

1
vy =x (l +:r2 +y2)




v2¢ =0
Figure 6. Domain and boundary conditions for example
problem no. 5

Table 1. Comparison of L* and CVBEM computational results
Interior nodal points
x » CVBEM é 7'

0.321 (.383 9.7842 4.752 8.03 x 107
0.643 0.766 10,0391 10.04 B %10
0.964 1.149 10.2610 10.28 636 x107*
1.286 1.532 10.3668 10.39 -5.719 %10
1.607 1.915 10.2417 7 10.31 ~2.79 %107
0.492 087 9857 9.752 235 x107°
(3.985 0.174 18.0992 10.04 119 x 10
1.477 0.261 10.2749 10.28 118 x10°*
1.970 0.347 10.3659 10.39 ~298 x10°°?
2462 0434 10.2439 1031 ~1.76 x 1072
0.470 (171 9.8476 9.767 dﬂc&S X197
(0.540 G.342 1G.0944 10.05 «t-l 32 X 10"3 B
1.410 0513 10,2838 10.27 914 SBX‘IQ‘
0.433 0.250 98329 9772 ~588x 10’4
0.866 0.59 10.0839 10.05 -2.26 X 1077
1.299 0.75 10.2856 10.27 -6.7x107°?
1.732 i.0 104917 1042 ~1.39 x107?
2.165 1.25 10.7489 10.63 ~-2.39 %10
0.383 0.321 98119 9.767 ~4.34 x10™
0.766 0.643 10.0659 10.05 -149x10?
1.149 0.964 10.2806 10.27 ~487 X 107°¢

and the stream function can be expressed as
1
_“xz + _vz)
where

w(@}= e, 2y + iy (x, y)
The L? approximation functions (¢ = 0.5) are
$=1.704 +0.9795x — 2.587y + 2.115xy — 1.009x2
+ 1,003y — 1.289xv% + 0 431x° + 0.1452%%y
+0.2258x%% — 0.146 1 xp®

Yix,yy=y (1

and

¥ =—1.704 + 2.587x + 1.02y — 2.115xy — 1.003x2
+ 1.009y% + 1.289x% — 0.4309% + 0.14613y
—0.2257x%p% — 1.452xy3

for state variable and stream functions, respectively. Figure
7 shows the approximation relative error between a CVBEM
model and the L2 approximation function values.

Example problem no. 7

Ideal fluid flow around a cylinder in a 9G° bend has the
analytic solution of w(z)=2z?+z"2 The state variable
function ¢ and stream function  can be expressed, regpec-
tively, as

=1+
and
1
Y= 2xy[1 —m}

The L2 approximation functions {e = 0.5) for the state
variable function ¢ and the stream function ¥ are given

6 =3.197x —3.197y — 1.828x* + 1.828y% + 1.894x%y
— 1.894xp° + 0.6294x% -~ 0.6294y° + 0.4612x°)
—0.4612x1°

and

g = —3.192+3.389x + 3.389y — 431 Ly + 13522
+ 13527+ 2.121x%y + 2.121xy% — 0.7136x3
—~0.7136y — 0.7536x2y? + 0.1259x* + 0.1 259p*

on the domain shown in Fig. 8. In comparison of the
approximation to exact values it was found that the relative
error is high along the circumference of the cylinder. If we
included some singular terms, e.g. 1/x, 1/y, 1/x% 1p%,..
into the set of basis funanon the approximation function
for the state variable ¢ becomes

$=1892x —1.892y — 14323+ 1 43207 4 0,4409x%y

0.434 0434 01237 01237
- 0.4409xy? -~ ——— -+ -

x ¥ x? e
0 01721 0.01721
e T

By increasing the boundary nodal points from 32 to 60 and
the terms of the set of basis functions, we obtain I1espec-
tively the approximation functions

7= 3324x — 3324y — 2.162x* + 2.1620% + 0.3721x%y

, \ 223362336
~03721xp* + 0.6896x° — 0.6896° ———+ .
x »
09113 09113 0.160% 0.1609 0.01315
+x2myzhx3+y3+x4
0.01315
4
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Figure 7. Domain, nodal placement and relative ervor for example problem: no. 6
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and

6=~ 001232 + 3.905x — 3937y + 0.3525xy — 2.892x2
+2.736p% + 2.686x%y — 3.14xp? + 1.126x2
—0.895y" — 1.017x%y + 0.299x2)2 + 0.5077xp?
—0.05475x* + 0.0745x% + 0.049x3)2

—0.1336x%y?
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The relative error (fpx act = $/@px acT) Of the approxi-
mation function ¢, is smaller than the approximation
function ¢,.

Example problem no. §

Figure 9 depicts the flow net for soil-water flow through
a homogeneous soil as computed by the CVBEM. The L?
approximation functfén of the state variable function ¢ is
given by =
$ =240 —0.6549 — 0.0989r — 1.864xy — 0.06852¢>
+0.118p% + 2.4 x 1073x%y + 1 676 x 1073 xy?
+ 1.878 x 1073x3 — 3129 x 10743

for € =0.5. Table 2 shows the interior nodal point values
for both the CVBEM model and the L* approximation
function.

APPLICATION TO OTHER LINEAR OPERATORS

The L* techniques can be applied to other linear operators.

... Hramadka and Pinder® examine a linear integral equation

along with two PDE problems. This section considers

~~ nonhomogeneous problems involving potential theory.

Example problem no, 9
Consider the linear operator, V%o,

9% GRS
25— _ I
V% =T, " Ty "

on the unit square domain with boundary condition



¢p=06+y*+x%y

{Fig. 10).
The 12 approximation functions for different T, and
T, values are shown in Table 3.

1516

Figure 9. Streamlines and potentials for soil-water flow
through a homogeneous soil for example problem no. 8

Table 2. CVBEM and L? computed results for example no. 8§
x y CVBEM PAS TN
4 4 199233 %' Ta0tk
4 8 2013408 20.35
4 12 20.9110 20.91
4 16 21.5258 21.70
4 20 22.1359 22.61
8 4 15.6543 15.34
8 8 16.5817 16.04
8 12 17.8253 17.30
8 16 19.0937 19.01
8 20 20.2656 21.04
12 4 10.7715 10.11
12 8 12.5019 116
12 12 14.7428 13.87
1 16 16.8199 16.8

Table 3. L? function coefficients and relative ervors for example no, 9

{0,

¢b=6+§2;

(0,0 /} (1,0)
Pp=6

(1,1}

~—¢b=6+y2+2y

o ¥

Figure 10

Example problem no, 13 - Poisson problem
Consider

¢=6+y"+ 2y

on the unit square domain (Fig. 1) with the linear operator

32 a2
ax?  ay?
such that
Vi¢=12+4y

The L? approximation functions are listed in Table 4 for
the various values of the weighting factor, €.

Example problem no. 11
Consider a linear operator,
2% 8%
24— s 2
Vi =T 3x? +t Ty 2

on the domain of exar'n;gie problem no. 10, we obtain
V2 =2+ 2Ty y

The L? approximation functions for different values of
Ty and Ty, are listed in Table 5 for € = 0.5. The maximum
relative error on the boundary is of magnitude 107 and on
the interior is of magnitude 107° for the T, # T},,..

Example problem no. 12

Consider the example problem no. 10 on the problem
domain of example problem no. 4 (Fig. 5), the L? approxi-
mation function provides the exact solution regardiess the
value of the weighting factor {0 <e < 1).

Maximum

Maximum relative

relative eII0T on

€r1or on operator

Ty Tyy 1 x ¥ xy x? ? xty xy?t x3? y? boundary relationship
1 1 5.856 0.8996 06616 0.2092 -0.8946 0.8959 1.791 =0 =0 ~0.5967 1072 107?
2 1 5.878 0.8277 03158 04275 —0.8277 1.656 1.572 = =} -1.048 107 10°?
1 2 5.849  (0.8657 08637 0.1007 -0.8657 0.4333 1.899 ={ =0 -0.3165 1072 107?
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Lxample problem no. 13
Consider

¢ =sinx + yx + 10 + cosy

on a unit square domain with a linear operator V29, such
that

V=2 —4 cos’y —sinx

The function ¢ can be expanded into an infinite series as

o 20
b =x - +yx + 10
n;() ( ) (2)1 + l)r
1 = )%
+ (1 . Z (_’l)k (_'_y_)_.>
257 (2k)!
or
- x3 +xS x7 .
p=1 x+yx—~§ %T Py
2 vd 296
b
3 45

Table 6 lists the approximation functions for different
nodal densities placements and basis function sets. The
maximum relative error along the boundary is of the
magnitude of order 1077 In all cases, e = 0.5.

Table 4.  L2solution of Poisson problem

3 @
0 X 2xty or pia 2xty
O<e<l 6+ yt+ 2xty
e=1 6+ pr+2xyp

Table 5. Example problem no, . L? approximatipn covfficients

N -~
Tex Tyy @ w '."._ —_
ad o - S
1 1 6+ y+ 2x%)
2 1 6.014 — 83 X 10 *x —0.305y + ¢.171)y
+ 85 x10°%x* + 1.829%% + 1.829x?%y
—0.553)°
L 2 5993 4+ 337X 107 4+ 0174y —6.75 %10 %5y
— 337 %107 %2 £ 0.517p% + 20677y
4+ 0.3221y7
2 2 6+ y*+ 2x%y
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Tuble 6. Example problem vo. 13, 12 approximation resulls

Number

of nodes

r f &

8 16 11 + 0.999x + 0.049r + xy —~ 0.013x7 — 1.29°
+0x?y 4+ 0xy*—0,14x" 4+ 0.53°

8 25 114 0.996x + 0.044p + xp —0.011x? —1.28y%
+0xip + 0xp?—0.14x + 0.53y°

16 16 11+ x+0.047y +xy —0.016x*— 1297
+0.9X10 7 x%) —0.64X10 xy? - 0.14x7
+0.53)?

16 25 11+ 0998y + 0.045y +xp —0.013x7 — 128"
— 086X IO Ry —D.43% 10 T xr?—-0. 143
+0.53?

16 25 11+ 0.992x + 0.0008654) + 0.9995xy
£6.07X107%x> - 107 + 4,62 107y
+5.52%10 %2 —0.1837x%+ 0.1806p>
—7.82% 107 "2 x%F —5.48 X107 x?p?
—7.832X10°xy?+1.886x*+ 1.729)*

CONCLUSIONS

The generalized Fourier Series method has been applied to
several linear operator relationships to demonstrate the
procedures involved. Sensitivity tests are shown which
examine the weighting factor used, the number and choice
of basis functions, and the number and placement of
collocation points. Currently, the computer program used
to develop the provided solutions is smalt (less than 300
lines of FORTRAN code} and can be accommodated on
most personal cOmputers.

Use of this new numerical method appears 1o open the
door to providing highly accurate solutions to linear opera-
tor problems. However, the extension of the method 1o
applications involving noniinear operator relationships
requires further research.
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