Approximating a linear operator equation using a
generalized Fourier series: development

T. V. HROMADKA II, G. F. PINDER and B. JOOS

Department of Civil Engineering, Princeton University, Princeton, NJ 08544, USA

Many important engineering problems fall into the category of being linear operators, with supporting
conditions, In this paper, a new inner-product and norm is developed which enables the numerical
modeler to approximate such engineering problems by developing a generalized Fourier series. The
resuiting approximation is the ‘best’ approximation in that a least-squares (L2) error is minimized
simultaneously for fitting both the problem’s boundary conditions and satisfying the linear operator
relationship (the governing equations) over the problem’s domain (both space and time). Because the
numerical technique involves a well-defined inner-product, error evaluation is readily available using
Bessel’s inequaiity. Minimization of the approximation error is subsequently achieved with respect to
a weighting of the inner product components, and the addition of basis functions used in the

approximation.

INNER PRODUCTS FOR THE SOLUTION OF LINEAR
OPERATOR EQUATIONS

The general setting for solving a linear operator equation
with boundary values by means of an inner product is as
follows: let £ be a region in R™ with boundary I" and
denote the closure of §& by cl(£2). Consider the Hilbert
space L2(cl(S2), du), which has inner product {f,g) =/ fz du.
{This is a real Hilbert space. For the complex version, use
the complex conjugate of the function g in the integral)
The way to construct the necessary inner product for the
development of a generalized Fourier Series is to choose the
measure u correctly; that is let 4 be one measure u; on Q
and another measure g, on F. One natural choice for a
plane region would be for u; to be the usual two-dimen-
sional Lebesgue measure dV on §2 and for y, to be the
usual arc iength measure ds on I'. Then an inner product is
given by:!

(f,g)==sj;fng+ E[fgds )

Consider a boundary value problem consisting of an
operator L defined on domain D(L) contained in L%(Q)
and mapping into L2(£2), and a boundary condition opera-
tor B defined on a domain D(B) in L*(2) and mapping it
into Z*(T"). The domains of L and B have to be chosen so
at least for fin D(L), Lf is in L2(2), and for fin D(B), Bf
is in L*(T). For exampie we could have Lf= V?f, and
Bf(s) equal the almost everywhere (a.e.) radial limit of f at
the point s on I', with appropriate domains,

The next step is to construct an operator T mapping its
domain D(7) = D(L) N D(B) into L2(cI(2)) by:?

TAxy=Lf(x)forxin £2

2)
Tf(s)=Bf(s)forson I’
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From (2) there exists a single operator T on the Hilbert
space L¥(c/(2)) which incorporates both the operator £
and the boundary conditions B, and which is linear if both
L and B are linear,

Consider the inhomogeneous equation Lf = g; with the
inhomogeneous boundary conditions Bf = g,. Then define
a function g on ¢/(§2) by:

£=g 0n{
g=gyonl

Then if the solution exists for the operator equation:
If=¢g

the solution f satisfies V2f =g, on £2,and f = g; on I in the
usual sense of meaning that the radial limit of fisg,on I
One way to attempt to solve the equation 7 = g is to look
at a subspace D, of dimension s, which is contained in
D(T), and to try to minimize | T4 —g|| over all the % in
Dy such as developed in Hromadka er a3

PURPOSE OF PAPER

In this paper, the mathematical development of the ap-
proximation procedure is presented. Three simple but
detailed example problems are included to illustrate the
subtle concept employed in the method, and to demonstrate
the progression of steps used in the development of an
associated computer program. Extension of the methods
to a computer program for the approximation of boundary
value problems of the two-dimensional Laplace equation is
contained in a companion paper. Generalization of the
comptuter program to other linear operator problems is the
focus of a final paper.

DEFINITION OF INNER-PRODUCT AND NORM
Given a linear operator relationship:
L{gy=hon2,¢=¢,onl (3)
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Figure 1. Definition of problem domain, Q, and boundary,
I. (Note: &y can inciude the temporal term boundary of
the initial condition specification)

defined on the problem domain £2 with auxilliary conditions
of ¢ = ¢, on the boundary I' (see Fig. 1). Here §} may
represent both time and space, and ¢ may be both initial
and boundary conditions. It is assumed that the working
space is sufficiently restricted (see following) such that ¢ is
a unique almost everywhere (a.¢.) solution to (3).

Choose a set of m linearly independent functions {f;)™,
and let §™ be the m-dimensional space spanned by the
elements of (f;)™. Here, the elements of (i ™ will be
assumed to be functions of the dependent variables appear-
ing in (3).

An inner-product is defined for elements of §'™ by (i, )
where foru, v € 5"

@, v)= j‘uvdl"+ S LuLpdQ 4)
r

It is seen that (u, v) is indeed an inner-product, because for
elements u, v, win ™

(i) (@, v) = (v, u}
(i) (fee, v) = k(u, v), for L a linear operator
(ili) (¢ +v,w) = (u,w)+ (v, w) for L a linear operator
(iv) (u, 1) = [p @Al + [ (Lu)* d2 =0
V) @, u)=0=u=0ae.onl and Lu=0ae over {2

The above restrictions on the operator L imply that L is
linear {see (ii) and (iii) in the above definition); if Lu =0
ae. over £ and u =0 ae. on I, this must imply that the
solution & = [0], where [0} is the zero element over QUT,
and for the inner-product to exist, the integrals must exist.
For the inner-product of (4) to exist, the integrands must
be finite. Additionaily, each element u €5™ must satisfy
SpuldlN <o,

For the above restrictions of L and the space S'™, the
inner-product is defined and a2 norm “||{I” immediately
follows:

ol =G, u)? (5)

The generalized Fourier series approach can now be used to
obtain the “best” approximation ¢, €5 of the function
¢ using the newly defined inner-product and corresponding
norm presenied in (4) and (5).

The next step in developing the generalized Fourier
series is to construct a new set of functions (g; »™ which are
the orthonormal representation of the {f;)™.

ORTHONORMALIZATION PROCESS
The functions {g;)™ can be obtained by the well-known
Gramm-Schmidt procedure? using the newly defined norm
of (4). That is:

si=h/lA
&m = fm— Fm- 80081 . -_(fmsgmul)gmﬂ]/.
Wom — .80 81 - = (o 8m-1) Bm-a
Hence, the clements of (g,-)’" satisfy the convenient proper-
ties that
0, if f*k
(Ej:gk)={1, =k N

In a subsequent section, a simple one-dimensional prob-
lem illustrates the orthonormalization procedure of {6).

The elements (g]-)"' also form a basis for §™ but, because
of (7), can be directly used in the development of a general-
ized Fourier series where the computed coefficients do not
change as the dimension m of (g; )™ increases. That is, as
the number of orthonormalized elements increases in the
approximation effort, the previously computed coefficients
do not change. Each element ¢, € 8™ can now be written
as:

L]
i=1

where 7; are unique real constants.

GENERALIZED FOURIER SERIES

The ultimate objective is to find the element ¢,,, €57 such
that || ¢,,, — ¢ || is a minimum. That is, we want || ¢, — ¢ [I*
to be a minimum, where

2

| $pg =112 = j( ¥ wg;—%) ar
AV

m 2
+ 5 (L 5 7,-g,—L¢) i ©)
N =

Remembering that L is a linear operator, and L¢ = fby the
problem definition, of (3) we have that (9) can be rewritten
as:

n 2
| Dy, — 4% = j( Y 7jgf_¢b) dr
=1
r

m 2
a i=1

Thus, minimizing || ¢, —®I® is equivalent to minimizing
the error or approximating the boundary conditions and
the error of approximating the governing operator relation-
ship in a least-square {or L?) sense. Because the {(g;)™ are
orthonormalized and the inner-product (,) is well-defined,
the coefficients y; of (8) are immediately determined by
the generalized Fourier constants, v/, where:

W=@ne), J=12,....m (1)
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Thus

m
o= vigi=

J=1

T @ 0)g (12)
j=1

is the *“best™ approximation of ¢, in the space §'™.

EXAMPLE PROBLEM NO. 1 (DIFFERENTIAL
EQUATION)

To illustrate the previous developments, a simple one-
dimensional torsion problem is studied. In this example,
four polynomials (linearly independent functions) are used
as a basis:

(f}-)"= (1,x,x% x%)
with the problem defined by, for0<x < 1:

32
¢
P —2,¢x=0)=1 and ¢(x=1)=2
Here L = #%/3x?, h = — 2, and ¢,, is given by the two point

values at x = 0, 1. The inner-product of (4) is now given as:

(v, 0= j urdl + .[ LulLydQ

r Q
%) 0%(v)
ax?  ax?

=Uv| gt uv| -+ I a2 (13)

0

The four-dimension space §* is the set of all functions
(polynomials) such that ¢4(x) = €y + Cx + Cax® + Cux®
where the C; are real constants.

The orthonormalization of the (f; ¥ proceeds as foliows:

For element g,:

(.fbfl) = (1)(1) |_x=0 + (1)(1) |x=1

x:

f 1)62(1)

and
gi=fAl = IN2 =22
For element g,

(f2.8D) = . V22) = V2D | g+ E)N2/2) 2y
N E a(x) 8%(v2/2) 20

x|
0

=+/2/2
g2=fo (fngle=x—(2/2)V2/2)=x—1]2
(B2 82) = (x — 1/2)(x — 1/2) | =g
+x— 12D —1/2) 1,

ax? 3x?

Y Teg
. j- Px—1/2) P —12)
a

=1/2
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Le=EhlNEl = (x = 12N =2x - 1)N2Z
Similarly for element g5:
&= (x*—x)/2

Element g, is more involved and is derived in detail for
illustration:

(fa 2D =V2/2:(f0.82) =V2/2: (f2.89) = 3
£a=x>—(f0,8081— (182082~ (f4.89 &

3 x
=x*——x*+—
2 2
3 x\2 3 x\2
Fada) = (x o i )' +(x3—-x2+—)
2 2 |x=0 P 2 x=1
3 x\]?
1192 (x:’——x’+—)
2 2
+ j dx
ax*
0

=0+0+ | (bx—3)dx=3

e e T

L ga=galligall = (x* =3 P+ 10N3
Hence, the orthonormal vectors (g; ¥ are:

(g = /2/2, (2x —DNV2, 6 —x)[2,
(2x% —3x% + x)/2/3)

Now, any element ¢, & 54 is of the form
. &
¢"= 3 18
i=1
The norm || ¢, - ¢ is a minimum when y; =y where ¥}

are the generalized Fourier series coeffcients determined
from:

17 =& )
That is,
I Q
= jg;cb,, ar+ j Lgf dS2
r 1]

where for simplicity, the Lg; are given by:
(Lg;¥*=10,0,1,(6x ~ 3}v/3)

Remembering that A =— 2 by the problem definition, wé
solve for the ;" as follows:

¥ =181, 9) =(\f) (@) B + ({2—) (®p) » +0
=312
13 = (g2, 9) *(%) (¢s) . +(2J:/g l) (6) x=l+ ¢

=22
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1 i
Y3 = (g, 9)=0+0+ 5Lgsfdx= 5(1)(~2)dx=~2
Q Q

¥ = (g, 0)=0+0+ fL Jd —l 3 ydx=0
V= (gn9) P x—[(ﬁ)( )i =
0 0

Thus, the best approximation in 5% is given by:

4
¢3= Y g =1+2x~x*
j=1

t is readily seen that L¢} =-~2=~rh, and ¢} satisfies the
problem boundary conditions.

DISCUSSION

From the example problem, a best approximation of a
linear operator relationship is obtained by a generalized
Fourier series development which minimizes, in a least-
squares {L%) sense, the error of approximation.

Because the generalized Fourier series approach is used,
several advantages over a matrix solution (for the generalized
Fourier series coefficients) are obtained:

i. Elimination of the need for solving large, fully popu-
lated, matrices such as occurs when solving the normal
equations.

2. Elimination of the instability which typically arises ina
matrix solution for Fourier coefficients (i.e. higher
powers of the expansion basis functions assumed).

3. The generalized Fourier series coefficients do not change
as additional functions are added (i.e. as the dimension
m of the space §™ is increased).

4. Generalized Fourier series theory applies; hence, error
analysis can be conducted using Besssl’s inequality as
discussed in the next section.

APPROXIMATION ERROR EVALUATION

Due to the generalized Fourier series approach and the
definition of the inner-product, Bessel’s inequality applies.
That is, for any dimension m:

@93 (goyp=Y 9 (14)
j=1 j=1

where

(@.¢)= E (9y*dr+ S (Loydsr= S prar+ 5 i)
r 5t T P

(15)

Equation (15) is readily evaluated and forms an upper
bound to the sum of (g;, ¢)* as the dimension m increases.
Consequently, one may interact with the approximation
effort by carefully adding functions to the (f; ¥ in order to
best reduce the difference computed by Bessel’s inequality.
0 a following section, Bessel’s inequality will be used to
define an objective function (noted by x) which will be
Subsequently minimized by determining a weighting factor
€ to be used in the inner product of (4).

EXAMPLE PROBLEM NO. 2 (VOLTERA INTEGRAL)

To further illustrate the approximation method, a Voltera
integral equation (such as occurs in developing unit hydro-
graphs from watershed rainfall-runoff data) is considered
where:

b3
q(r) = gf(t——s)qi(s) ds, 0<¢<2
0

where for simplicity the effective rainfall intensity is given
by the constant value:

{t—s)=1
and the runoff hydrograph flowrate g (¢} is given by:
3, 0=

l‘ =
a0 {—22+h—¢

1<r<2

In this class of problem, neither boundary (nor initial}
conditions are involved, hence the inner product of (4)
becomes:

(u,v) = 5 LulLvdQ)
£
2 [t r
= j Si(r—-s)u(s)ds ji(fu-s)v(s')ds dr (16)
=0 Lo 8

By assumption /(2 —s) =1, and the inner product reduces
to

20t t
0= Su(s) ds jv(s)ds dr
=0 L0 !

Three elements are considered for basis functions (fj)a_.
namely the polynomials {1,s,s%). The orthonormalized
elements {g;)* are determined in the following:

£y

4
Lfi= j(l)ds'—‘r
0

2
Louf)= Ifzdf=8/3; £l =23
0

and
g1 =1l fuil =3
82

t
Lfy= Ssds =12
H
:

Lgy= j\/gd“:f\/g

0
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2 2 2
S feE)= ijngldr= I(%) (V3)ydr =3
0 G

Now

&=fa— (fn.8)8.=5—-3/4

1é j( 3jayds =
= g - [
&2 2 4
0
2

i j(:’ 3:)2d

s = — —— e r:—

» &2 2 4 10

L g =&ll&l=6—3)VI0
g3
Analogous to the above:
(Fe0=%VE
(f82) =V10/5.625
L E3=fa— (58081~ (f3.£2) 82
=52+053—1.7s

where the overbar notation indicates repetitive digits.
Finally:

g3=23/ll2all = 10.52345% — 18,7085 + 5.6125

The generalized Fourier coefficients are determined as
before by:

7= (end)= j Lg Ly dQ

Q
1 2
=\/§ j O e*Har+ \/é j (=22 + Tt —a)dr
Q 1
=1.8575

v¥ = (g3, 9) = 0.21082
v3 = (g3, ) =—0325

Thus the best approximation is developed (for the defined
inner product of (16)) by:

$s=—3.425°+ 6.7467s — 1.1865

For this example problem, the exact solution is determined
by taking the derivative of the ¢(¢) function (rewritten in
terms of the variable 5):

352, 0<s<
=

1
°6) {—4s+ 7, 1<sx2
Figure 2 compares the exact solution ¢{s) to the approxi-
mation function ¢(s) developed from using only three
polynomial basis functions.

It is noted that although the example problems Nos. 1
and 2 are different linear operator relationships (i.e. a PDE
and a Voltera integral), the approximation methed and

procedures are identical.
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Figure 2, Best agpproximation unit hydrograph {dashed)
and exact unit hydrograph (solid line)

Additionally, Bessel’s inequality (14) can be used to
evaluate the error of approximation for this problem as
follows:

2 2
(¢, ¢)= 5 (L¢Pdr= j lg(O)ar
=0 =0
2

(£3Pdr + j (—2t*+ 7t —4)*dr = 3.6095

1

(=Y S,

In comparison,
m
Y yfr=(1.8575)%+ (0.21082) + (—0.325)?
=1

=3.6003 < (¢, )

That is, although the generalized Fourier coefficients provide
for the best approximation from space $™, the error of
approximation x given by:

x=@.0-3 7 a7
ji=1

is nonzero and, therefore, the addition of additional elements
to {f;)™ (increasing the dimension of §™) will necessarily
add more positive values to the sum the v}?, resulting ina
decrease in . Should ¥ =0, then [l¢ —o,,|l=0 and
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¢ — ¢, =[0], the zero element, and ¢ =4, ae. For
instance, example problem No. 1 results in:

(9,9)= I (¢)*dr + I (Le)*d2

r 0
1
= 08 Loy + @5 | ey + j (P ax
x=0

=)+ @+@=9

In comparison,

4
*2 __ *2
=2
1 i=1

13

J
332 132
={—=) +{—=) F (=2 +OF=
(\/5) (\/5) [ (
Thus, x =0, which indicates that the approximation ¢,
equals the exact solution ¢a.e. (almost everywhere). Of

course for this example, ¢ = ¢, identically over £, and the
a.e. statement can be dropped.

THE WEIGHTED INNER PRODUCT

In the inner product of (4), equal weight is given to the
various requirements imposed on the best zpproximation
function ¢, from the space $™ spanned by the m lincarly
independent basis functions (f;)™. Namely, the L? error in
satisfying the linear operator relationship over £ is con-
sidered by equal importance as the L error in satisfying the
problem’s boundary {(and initial) conditions, (of course for
the Voltera integral example problem, only one term is
used in the inner product definition and the concerns as
to weighting factors is no longer needed).

Due to the limitations of computer power, only a finite
number of basis functions can be used for approximation
purposes, and so an argument is made to weight the terms
which compose the inner product differently. For 0 <e <1,
one weighting of (4) is simply:

m,v)=¢ guvdl"-!- {1—¢) 5 LulpdQ) (18)
r Q

In (18), an e-value close to 1 would force the approxima-
tion function ¢, of §™ to focus upon satisfying the prob-
lem’s boundary conditions rather than satisfying the linear
operator. Similarly, and e-value close to 0 would focus the
b, approximation towards satisfying the linear operator
relationship and ignore the boundary conditions.

It is noted that (18) is stilt an inner product for a given
choice of e, and will be used to develop the generalized
Fourier series using the previously presented procedures,
And as the dimension 5™ increases, the Bessel’s inequality
still applies in that ¥ = X, and

Xe=0=l¢,—all,=0 (19)

In (19), e-notation has been added to clarify that all norms,
inner products, and even the orthonormalized basis func-
tions are now functions of e for 0 <e <1. However, for
ease of presentation in the following text, the e-notation is
omitted although it is implied that all relationships are now

dependent on the e-value used in the weighting of the inner
product components.

The selection of the ‘optimum’ e-value to be used in
(18) depends on the rule assigned for optimization. In this
paper, € is chosen which minimizes the Bessel’s inequality
relationship:

Xe = (#.8)e — X 72" (20)
i=1

= (¢, b)e —jz (®.8)% (21)
=1

In (20) and (21) it is stressed that all terms depend on e.
The inner product weighting e-value is chosen which mini-
mizes ¥, of (21).

EXAMPLE NO. 3 (WEIGHTED INNER PRODUCT)

To illustrate the inner product weighting concept, example
problem No. 1 is restudied with only one basis function,
f=x% Tt is recalled that L¢ = 3*¢/ox? h=—2, and
Px=0)=1, ¢(x=1)=2. Proceeding as before, and
dropping the € subscript notation, therefore:

(fLf)=¢ j (f?dr+(—e) j (Lh)* a0

r 111

1
= eGP | gt €D+ (1) j (—2) dx
1)

=4 —3¢
LAl =4 —3e

and

gv= AN =x2f\/4_"‘_3?

The only Fourier coefficient yT is computed as:

't =(¢,g1)=e(—:\/_i—:3—?)<l)

x=0
x*
+ el ———=) (2
(\/4—‘36‘)( ) x=1
+a ( : 2ax = S22
( e)[\/m( ¥ i
0
Thus,
1=k
be—4
=x"( ); for 0<e<1
4—3¢

The next step is to compute X,
1

(9, 9) = €(@pF | 1ag + €(Pp) oy + A —€) Sfidx
[H

1
=e(IP+e(2t+(1—e) j (—2)*dx
0
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=4+¢ for0<Ce<]
71? = (366° — 48¢ + 16)/(4 — 3¢)
Xe = (9, 9) —71?
= (4 + €) — (366 — 48 + 16)/(4 — 3¢)
=4+ 13¢ + 16/(3¢ — 4)
= ¢(3% —40)/(3e — 4)

Figure 3 displays the plot of x, against € for 0 <e<C1.
Because only one basis function f; = x? was chosen in this
simple example, the weighting is focused toward satisfying
the PDE or the boundary ¢onditions as shown in Table 1.
For this simple problem, ¢, = kx? where k = (6 — 4)/(4 — 3¢)
from the above calculations. Table 1 summarizes the impli-
cations resulting from using various values of k in ¢,.

From Fig. 3 it is seen that x, is minimum when ¢ =0,
Obviously from Table 1, however, € =0 would not be the
optimum choice of ¢ due to the approximation only satis-
fying in 3 minimum least-squares (£2) sense the PDE and

% 05 |

Figure 3. x.=(9,¢)— “ffzfor example problem No. 3
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Tabie 1. Inner product weighting implications for problem No, 3

€ k (forp =kx? Notes

0 -1.0 All weighting is focused toward

satisfying d*gfaxt = — 1.

Here, ¢, = —x*
0.50 —0.40 An intermediate value for o,
1.0 +2.0 All weighting if focused towards

satisfving ¢{x = 0} = 1 and
¢(x = 1) = 2. Here, ¢, = 2x?

neglecting the boundary conditions. For typical applications,
¢ is chosen when maximizes x.. In this way, the largest’
value of approximation error is being used to evaluate
Bessel’s inequality, which is then used to evaluate the reduc-
tion in approximation error as additional elements are
added to the test collection of basis functions.

CONCLUSIONS

A new approximation method is presented which incor-
porates a classical generalized Fourier series expansion to
solving a linear operator relationship. A new inner-product
and norm is presented which enables the modeler to develop
the ‘hest’ approximation of the boundary conditions and
the linear operator relationship in a least-squares (L) sense.
Because the method is based on generalized Fourier series
theory, Bessel’s inequality applies and allows for & readily
compuied ‘error of approximation’. By weighting the com-
ponents of the inner product, a relationshjp based on the
Bessel’s inequality is developed which can be used to deter-
mine an optimum inner product weighting factor.
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