UNITED STATES
DEPARTMENT OF THE INTERIOR
WATER RESOURCES DIVISION

Reston, Virginia

SOME ADVANCES IN CVBEM MODELING
OF TWO-DIMENSIONAL POTENTIAL FLOW
by

Chintu Lai and Ted V. Hromadka II

For Presentation at the
ASCE Spcialty Conference
Advancement in Aerodynanmics
Fluid Mechanics and Hydraulics

Minneapolis, Minnesota

June 3~-6, 1986



SOME ADVANCES IN CVBEM MODELING
OF TWO-DIMENSIONAL POTENTIAL FLOW

Chintu Lai!, M. ASCE and Ted V. Hromadka II?

ABSTRACT: Of interest in flow modeling is the exact solution of classes of
partial differential equations such as the Laplace and Poisson equations. The
Complex-Variable Boundary-Element Method (CVBEM)—a new method in
computationa)l hydraulics—exactly satisfies the class of potential equations
within the domain of interest and makes only two approximations along the
boundary: discretization of the boundary and use of trial functions.
Improvement of the solution accuracy and efficiency is among the most
important factors for enhancing the CVBEM modeling capability. Two new
schemes of boundary integration by trial functions have been investigated.
The first scheme uses variable-definition irial function, which affords the
modeler the capability. of "fine tuning" without enlarging the size of solution
matrix. The second scheme expands the CVBEM into a generalized Fourier
series and eliminates the need for matrix solution entirely. These schemes
seem to offer great potential for effective CTVBEM modeling.

INTRODUCTION

As a new member in the family of boundary element methods, the

Complex-Variable Boundary-Element Method or CVBEM has been shown to be
an ¢ffective and valuable technigue for modeling two-dimensional potential
flows. The majority of boundary-element formulations have dealt with a
real-variable integration along the boundary of a real domain (1,12).
However, 1f the flow is two-dimensional, a boundary integration based on
the Cauchy integral formula leads to a faster and more efficient computer
algorithm (2). Among the first to apply such an approach were Hunt and
Isaacs (8), Hromadka and Guymon (4), and Vinje and Brevig (14).

Systematic and intensive research on the CVBEM saon followed (5,6). A
comprehensive account of the first-stage CYBEM development was later given
in a volume, Hromadka and Lai (7). The second stage of CVBEM study,
"advances in CVBEM modeling,"” was started immediately. Research topics and
activities involved in the second stage are laid down by Lai and Hromadka
(10), which include both ongoing projects and future plans.

These advanced modeling activities can generally be classified into three
categories: (a) expanded CVBEM applications through combined use of the
basic CVBEM with other existing solution methods (I1); (b} advanced CVBEM
modeling through improvement of the solution techniques (i.e. improvement of
the numerical algorithms); and (¢) enhanced CVBEM simulation through modi-
fication of computer algorithms, expansion of model components, adaptation
to the real-world complexities, and update, revision, or renovation of general
modeling techniques. A series of reports, each focusing on one of the afore-
mentioned areas, can be compiled; some of these have already been written
(3,11), some are ip preparation, and some are planned for future publication.
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This paper is intended to address category (b) as described above.
Several items falling into this category have been listed in Lai and Hromadka
(10) under the section title "Development in CYVBEM modeling." As the selec-
tion of trial functions affects most significantly the accuracy of CVBEM
approximations, improvement in this matter is a most serious concern to the
CVBEM modeler. This paper reports some recent improvements made in this
area, accompanied by two illustrative examples. .

THE PRINCIPLES OF THE COMPLEX-VARIABLE BOUNDARY-ELEMENT
METHOD

' In a simply connected complex region, €, with a simple closed boundary,
T (see Fig. 1), the Cauchy integral formula

1 w(g)dg
©o2ni [ ~z (h)
T

defines a single-valued analytic function, w, at any interior point, z, in terms
of that funciton integrated along the boundary T. Thus, the field of
two-dimensional potential flow, which may be represented by complex
potential w(z) = §z) + i ¥(z), ¢ = potential function, ¢ = stream function, can
be well described by Eq. 1 if proper boundary conditions are given. The
counter part of Eq. 1 in computer modeling, can be expressed as

w(z)

'w(z) ©o2mi .Z_l -z (2)
J.—.
I

Evidently, two basic approximations are involved in Eq. 2 from Eq. 1; the
discretization of the boundary I into m boundary elements, I': (Fig. 1), and
the replacement of w(z) on the boundary by a continuous gloéal trial
function, G (z). These basic approximations result in an approximation
function w(z), (H_ approximation function), which is different from w(z). With
a proper definition of Gﬂ:. (see the following section), it can be proven that,
for 5 = max |rj| , T =0 T () é1=r61 r=r, 181-‘% G (z) =w(z), z € I

(ii) L:J(Z) is analytic in fl, and converges at f (Cauchy principal values exist);
(ii1) lin}_é.o(z) = (z), ze and (iv) «(z) is continuous on QUI. (7)

For CVBEM algorithm development based on the foregoing fundamental
principles, one can easily perceive that both the accuracy and the efficiency
of CVBEM modeling depend upon the soundness and degreg of
approximations rendered by I and G . The ¢ffect of the T approximation is
a straight forward trade-off between finer discretization for better accuracy
and fewer elements for easier computation. The effect of G,, on the other
hand, is more involved and complicated requiring some technical
considerations and mathematical scrutiny. Advanced modeling through the
improvement of trial functions seems to be a main concern of the CVBEM
modeler, and is the theme of this paper.

THE TRIAL FUNCTION AND THE CVBEM DEVELOPMENT

To define the trial function Gn in the w development {see Eq. 2), 2
complex polynomial of degree n is generally used. The polynomial is defined
on each boundary element but joined together at each vertex node to form a
continuous gilobal function. Among many possible choices for n, the linear
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iz. 1. CVBEM Boundary Discretization:
Tj = Boundary element linking
nodes i and j+1;
z; = Nodal coordinate for
node J, (Zwi= 213 Fig. 2, Boundary~Element Geometry for
T = Natural boundarv -

function (n=1) is, by far, most frequently used. The linear global trial
function G,(z) can be defined as

m
G(2) =T N(z) o; (3)
=1
in which W, is a specified nodal value at nodal point z. on r}._im I‘j ie. Gj =
G(zj) =_$(zj) + iW(zJ.), and Nj(z) is a linear basis function definéd as

(2 =2, /7 (2~ 2, ), 28T,
(4)
N(z) = (zj+1~z)/(zj+l-zj), z &7,

0, zh T, VL,

Trial functions of other degrees can also be deyveloped accordingly.(7)

To obtain wz) = §z) + iPz) = Hx,y) + i®x,y), from the given potential
flow problem, the following algorithm has been developed. Assume at 2ach
node either &(z) or Wz,) is known but not both (a typical condition in
engineering pro'bicms). Let the interior point z (zeQ) in Eq. 2 approach to an
arbitrary node j. With the assurance of the existence of a Cauchy principal
value, the circuit integration can be completed, which results in &(z.). By
repeating the same process to all nodes, and then bv equating the real and
imaginary parts on both sides of each resulting equation, 2m real-variable
equalions may be obtained. Then the m unknown nodai values, ¥z} or ¥ z.).
can be evaluated by using only m out of the 2m equations, either bjy_ )
collocating known nodal values explicitly or collocating unknowns impliciry.
The process involves solution of an m X m matrix, (7

General strategy in improving the accuracy of CVBEM soiutions includes
(a) finer discretization of the boundary, which is equivalent to increasing the
number of nodes, and | (b) use of a higher degree polynomial for the trial
function. The first approach results in a rapidly expanded square matrix, that
is fully populated, whereas, the second approach leads to a greatly complica-
ted solution algorithm. Consequently, it is desirable to derive different forms
of global trial function that are not heavilv subject to the above menticned
computational difficulties or constraints.
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Two new schemes are proposed in the subsequent sections: one uses a
variable-definition trial function to increase the solution accuracy without
enlarging the square matrix, and the other relies on the Fourier series
expansion to completely eliminate the matrix solution.

YARIABLE-DEFINITION TRIAL FUNCTION _

Instead of using only one trial function for each boundary element T,
a combination of trial functions, herein called a variable-definition trial
function, may be used within a single element. For instance, a combination
of constants and a linear function within a T, may be tried.
' Referring to Fig. 2, two non-negative wéighting factors 77 and n: , are
selected on the boundary element T. such that n} + g $ L T’he straight-line
element T. with length L. is then divided into three s"egments at points z
and 2], with lengths, n.Lj' i - nj+ - nJ?H)L., and n?T,le. Furthermore, the
wiz)- vaiue on T. is distributed in sich a way ‘that w(zl) ="w. and w(z) = GJ'.H
in the two end segments close to z; and Z.4, respectively, dnd linearlv varied
in the mid-segment, ie. w(z) = N3) 'w'j + ji_H(z) CJ'jH = [(zJTH- 23, + (z =
zJT")DjH]/(zJTH- z[). The net effect of these weightings is an increase in nodal
value influence over the corresponding element.

The contribution I.’ such a variable-definition global trial function G(z)
can bring forth to element I'J. is, from Eq. 2,

S (<P -

Ioo2mi ) -z

I

Now, if ¢(z) is known on I ., then a trial function can be selected t0
exactly calculate ¢(z) contribution for T, (with nJ?" and n°_, properly adjusted).
For {(z) unknown on I. , use the trial tunction specified on T, as shown in
Fig. 2 (using the r!;." and n7., that are properly calibrated). Then the integral
approximation is,

zr
] rAn .
o 4 ag j+l a
SR B T T, ¢ (07, s
L “ zg ’ 2y
+ ¥in (6)
Z, °7°F

Using this technique, a global matrix system of order m x m {Because there
is no increase in the number of elements or of vertex nodal points, the value
of m, and thus the size of the solution matrix, remains unchanged) can be
formed and the unknown nodal values, ¢, computed. With the known (&S.JA
and the evaluated () nodal values available, the approximation function wi(z)
can be readily computed.

An application of the variable-definition trial function to CVRBEM
solution of an ideal-fluid flow around a cylinder 1s illustrated in Fig. 3.
The problem boundary T and domain @, with strategically placed 2! nodal
points, are shown in Fig. 3a, The boundary conditions and other pertinent
data are also provided in the figure., The numerical solution was first
carried out using nj"f = n7 = (.50, (corresponding to defining a constant nodal
value over each boundary element). The comparison of the computed
approximative boundarv T and the given boundarv I, displaved in Fig. 3b

k4
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Tig. 3. Ideal~Fluid Flow Around a Cylinder: (a) Boundary conditions
and nodal point placement, (b) Approximative boundary for q =0.5,

(¢) Approximative boundarv using 75=0 except for Nodes(l)and
(Note: Displacements are magnified tenfold.)
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indicated that numerical integration error is most significant near the
cylinder. Subsequently, n7 = n7 = 0 were tried (corresponding to a linear trial
funcion over each bound’ary element), which indicated that further adjustment
was needed near node | or 17. The choice of m, = 0.95 for I, and an equiv-
alent choice for T, were finally made. The improvement in computational
accuracy is reflected in the closer fit between T and T as shown in Fig. 3c
Likewise, in other problems, the optimum simulation resuits may be
obtained by properly adjusting the weighting factors nfand n~.  More marh-
ematical and technical details including practical error analysis are reported
separately (3). In short, the basic idea of the variable-definition trial function
is to provide the modeler with the capability of fine tuning without enlarg-
ing the matrix size, an important factor in simulation by a microcomputer.

FOURIER SERIES SOLUTION

Instead of developing a square matrix system for boundary nodes, which
has been the case for all previous approaches, the CVBEM may be expanded
as a generalized Fourier series, thus eliminating the matrix solution entirely.
Through the use of Lebesque integrals and through generalized mathematical
theorems [for background reading see Korn and Korn (9)], it can be proved
that the complex flow. field approximated by w(z) is amenable for solution by
the Fourier series expansion. In other words, the problem flow fields possess
the properties that are essential for the Fouries series application such as that
w(z) is in an inner-product space, that Bessel’s inequality applies, that the
orthonormal vector technique is applicable, and that the CVBEM converges to
the boundary values or to the midpoint values if discontinuous.

For a given potential flow problem, Eq. 2, with a linear trial function
G,, can be expanded and transformed to the form (see (7) for details)

o_(2) =,~£1 g (z-z; ) In (z-2,) + R, (z). (7)

in which ¢, = a. + ib, 8, and b, are real numbers; and R (z) is a first
degree complex polynomial resulting from the 2m—circuit along T about point
z. By writing R, (z) = Cnetl*c 7, R (2) in Eq. 7 can be included in the
preceding summation as the (m+1)th and (m+2)th terms. This permits Eq. 7 to
be rearranged in the form (hj may be identified by comparing with Eq. 7)
N m‘fz . 2{m+2}
Up(2) = 2 (3 hy 4+ by By = jzl 7 £ (8)
in which 7, are real-number coefficients such that Y90 = @, and Vo = by
and f,, , = h, and f, = if, ;, = ih, The {f} are then orthonormalized By
the Gram-Schmidt procedure (9) to the set of function {qj} using the
definition of inner-product, that is, g, = £ /I, - . g_=1(f - (£_.9,9 -
T (fm’gm-l)gm—ll/”fm-(fm’gl)gl-”' -(fm'gm—l)gm-l”' With respect to {gj}’

. 2({m+2} R .

G _(z) = j):1 ¥, &) )
in which ‘ffj are generalized Fourier coefficients 1o be determined. The value
of |lw-w|| i minimized when 7 = (u,gj). By back substitution, the 7, corre-
sponding to the {f. can be evaluated, which leads to the solution of the
CVBEM approximator w(z), satisfyving the given boundary conditions of ¢
and/or ¢ in mean.

The Fourier series solution technique has been applied to a steady
irrotational flow in a branching channel. The boundary conditions are
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Fig. 4. Flow in a 3ranching Channel: (a) Boundarw
conditions, {(b) Computed results.

specified at up- and down-stream ends as shown in Fig. 4a. The computed
results are plotted in Fig. 4b, with solid lines representing streamlines and
dashed lines equipotential lines. The computer algorithm for this approach is
efficient, and the FORTRAN program implemented on a 64K personal
computer, i1s easy to use. The rigorous theorem proofs, the detail
mathematical development, and the computer algorithm formulation.
accompanied by several more problem examples will be reported separately.
Schultz (13) has applied a least-squares method to breaking waves and has

reported that the approach appears to be more econoemical and robust than
collocation approaches.

CONCLUSIONS
Improvement of the solution technique is among the most important
factors for advancing the CVBEM modeling capabilitv. The solution aceuracy

Fi Lai



of the CVBEM depends heavily on the type of trial function and the method
of the boundary integration used. Two new schemes of boundary integration
by trial functions have been investigated. The first scheme uses a
variable-definition trial function, which is found to afford the modeler the
capability of delicate adjustment or "fine tuning" to increase the solution
accuracy without enlarging the maitrix size. The second scheme expands the
CVBEM into a generalized Fourier series, approximates boundarv conditions
in a "mean-square” error sense, and therby eliminates the need. for matrix
solution entirely. These schemes seem to show substantial improvement over
the previous schemes and offer potential for more effective CVBEM modeling.
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