Computational
Mechanics’'86

Theory and Applications

Proceedings of International Conference on
Computational Mechanics, May 25-29, 1986, Tokyo

Springer-Verlag
Tokyo Berlin Heidelberg New York



The Complex Variable Boundary Element Method
in Groundwater Contaminant Transport

C.C. Yen and T.V. Hromadkal ll
Williamson and Schmid, 17782 Sky Park Blivd., Irvine, CA 92714, USA

Abstract

The Complex Variable Boundary Element Method or CVBEM has been
used to develop a simple but powerful numerical analog of con-
taminant transport in a saturated, ceonfined groundwater aquifer.

In this paper, only the steady-state, two-dimensional, advection
transport flow problem will be comnsidered. The applications
include the background flows, sources and sinks, and flows intro-
duced by the boundary conditions. The numerical analogy produces
locations of streamlines and the time-evolution of the contaminant
front location. Due to the small coding reguirements, the CVBEM
program is operable on a typical home computer.

Introduction

Potential flow theory may be used to depict streamlines of the
groundwater flow for analyzing the extent of subsurface contami-
nant movement. Especially in the preliminary study, the potential
flow theory can be used to determine whether or not a more so-
phisticated study based on a long period of observation and ex-
pensive data collection is required.

However, when time-dependent boundary conditions are present and
dispersion-diffusion effects are significant, the steady state
modeling approach becomes inappropriate. Another limitation of
this technique is that it is not so suitable as to accormodate
nonhomogeneity and anisotropy within the aguifer, because the
complexity rapidly exceeds the modeling capability of the
analytic function technigue.

Due to the limitation of readily available analytic functions,
many flow field problems are not easily sclvable. The CVBEM,
however, provides an immediate extension. That is, potential,
flow theory is utilized to solve analytically the groundwater
flow field as provided by sources and sinks {groundwater wells
and recharge wells), while the background flow conditions are
modeled by means of a Cauchy integral colleocated at nodal points
specified along the problem boundary. The technigue accommodates
nonhomogeneity on a regional scale (i.e., homogeneous in large
subdomains of the problem), and can include spatially distributed
sources and sinks such as mathematically described by Poisson's
equation. Detail developments of the CVBEM numerical technigue
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are given in Hromadka [1984a and b].

For steady state, two-dimensional, homogeneous-domain problems,
the CVBEM develops an approximation function which combines an
exact solution of the governing groundwater flow equation
{(Laplace equation) and approximate solutions of the boundary
conditions. For unsteady flow problems, the CVBEM can be used
to approximately solve the time advancement by implicit finite
difference time~stepping analogous to domain models.

In this application, only the steady state two-dimensional flow
problem will be considered in a homogeneous domain. In other
words, application of the CVBEM contaminant transport model is
restricted to steady state flow cases in which sclute transport
is by advection only.

Governing Eguationg

For steady-state flow, the equation of continuity can be expressed
as

Veo¥=o0 (1)

where V is the velocity vector v (u,v,w} and p is the fluid
density. 1If density variation is negligible, Eg. (1) reduces to

- -

VeV =20 (2)
The velocity vector is related to the Darcy's Law as follows:

Vo= -Ky V¢ . {3}

in which V ¢ is the gradient of total potential of head, having
the dimension of energy per weight, or length. Substituting the
Darcy equation, (3}, into the continuity equation, (2}, one
obtains

Voelk, Vel =0 (4)

If, in addition, Ky is constant, (for example, water of a constant
viscosity in a homogeneous sand}, Eg. (4) reduces to the Laplace
equation.

7%¢ = 0 {5}

CVBEM Development

The CVBEM has been shown to be a powerful numerical technique
for the approximation of properly posed boundary-value problems
involving the Laplace equation (Hromadka, 1984b). The keystone
of the numerical approach is the integral function :

[ G(z)de )

1
w(z) = — [
21i | -z
r



XI-139

Fig.l. Iterative Estimation of Freezing Front Location

The third iteration step proceeds by defining 22} and 0} based on
the mutual boundary of C? and the above procedure is repeated.

The iteration process continues until the final estimates of ¢
and 94 are determined with corresponding dg and Wy approximators
such that

|kgdpe/ds - k db, /ds| <e, z €C (2)

Using the Approximate Boundary

As discussed previously, the subject problem reduces to finding
a solution to the Laplace equation in §if and O, where {f and i
coincide along the steady state free;ing front location, C. The
CVBEM develops approximators wy and wy which satisfy the Laplace
equation over {Qr and Iy, respectively. Consequently, the only
numerical error occurs in matching the houndary conditions con-
tinuously on T¢, Iy, and C.

To evaluate the precision in predicting the freezing front loca-
tion, an approximate boundary is determined for each subproblem
domain of Qg, Qp. The approximate boundary results from plotting
the level curves of each CVBEM approximator (i.e. wg, wg) which
correspond to the boundary conditions of the problem.

For example, in Q¢ the thermal boundary conditions for a roadway
embankment (Fig. 2) are defined on the problem boundary T¢ by

¢ = ~-10°C, z ¢ top surface

¢ = 0°C, z € freezing front

y = 0, z e left side {symmetry)

¥ = constant, z ¢ right side (zero flux)
After developing an &f and {f from the CVBEM, the approximate
boundary 'y is determined by plotting the prescribed level curves.
The figure also includes I'f superimposed with T'g. Because wyg is
analytic within the interior of the approximate boundary and

satisfies the prescribed boundary conditions on the boundary Tg,
then wy is the exact solution of the boundary value problem
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Fig. 2. The Approximate Boundary Ty and the closeness-
of-fit to the Problem Boundary, (g
redefined, on 'y and its interior, g. Should T¢ completely cover
g, then we is the exact solution to the subject problem.

Thus, the CVBEM modeling error is directly evaluated by the close-
ness-of-fit between [y and Fg. However in this application, the
approximate beoundary concept is used not only to examine the
closeness-of-fit to the boundary conditions, but possibly more
crucial, the closeness-of-fit of matching the estimated freezing
front location between Q¢ and along the contour, €. Should

¢ and Q¢ match C continuously, then wg and wy equate thermal

f{ux continucusliy along C.

Applications

Figure 2 depicts an application of the geothermal model for a
roadway embankment problem and the use of the approximate boundary.
Figure 3 illustrates the two-dimensional steady state freezing
front location for a geothermal problem involving a buried sub-
freezing 3-meter diameter pipeline. An examination of the approx-
imate boundaries indicate that a good CVBEM approximator was
determined by use of a 26-node CVBEM model. The maximum depar-
ture § between the approximate boundaries and the problem houndary

occurred along the top of the pipeline and had a value of
approximately 3.5 cm. The average departure 5 is estimated at
less than 1 cm. The freezing front maximum departure is approxi-
mately 4 ¢m and occurred at the right-hand side. Average depar-
ture on C is less than 2 cm.

The example problems presented illustrate the usefulness of the
CVBEM in predicting the steady state freezing front location for
two-dimensional problems. Pogsibly the most important result is
the accurate determination of the approximation error inveolved in
using the CVBEM. The usual procedure is estimating the freezing
front is to use a finite element or finite difference numerical
analog. A hybrid of these domain methods is to include a variable
mesh in order to better accommodate the interface. However, none
of these methods provide the error of approximation., 1In compari-
son, the CVBEM model provides the approximation error not only in
matching the boundary conditions, but in predicting the interface
location between g and 924. And this error is simple to interpret
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Fig. 3. Application of the CVBEM Geothermal Model
to Predict Steady-State Conditions

as an approximate boundary displacement from the true problem
boundary, and the displacement between Qy and &y along the
freezing front contour, C.

Time-stepped Approximate Boundary

By plotting the several CVBEM generated approximate boundaries,

the time evolution of approximation error is readily seen.

Figure 4 demonstrates the CVBEM modeling error in the time se-
guence of approximations developed for the pipe solution isoclated
from the Fig. 3 problem. From Fig. 4, it is concluded that the
computational effort employed by the CVBEM analysis is adequate
for this case study. The figure shows a variation in the approxi-
mate boundary location as the solution progresses in time; however,
the variation is of less than 1.0 cm in magnitude.
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Fig. 4. Approximate Boundary Evolution for Time-Stepped
" Problem Solution (see Fig.3 for Domain Definition)

Conclusions

In this paper the CVBEM is used to approximate a slowly-moving
interface between two guasi-potential problem solutions. The
case study considered is soil-water phase change in freezing
soils. The approximate boundary technigue is used to demonsgtrate
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the CVBEM modeling error in achieving the prescribed boundary
conditions as the time-stepped advancement in time is
approximated.
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