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Apstract

The Complex Variable Boundary Element Method or CVBEM provides
solutions to two-dimensional potential problems. Especially
unique to this method is the approximate boundary which repre-
sents the true problem boundary transformed to the spatial con-
figuration where the problem's boundary conditions are satisfied.

In this paper, the approximate boundary technique is extended

to the temporal term. The resulting approximate boundary repre-
sents a time-stepped sequence of geometries where at each time-
step, the problem's boundary conditions are satisfied. This
continually deforming approximate boundary indicates a true
measure of numerical accuracy which although based on highly
sophisticated analytic function theory, is easy to interpret

and understand.

Applications of this new technique are demonstrated in studying
slow moving interface problems involving the freezing and thaw-
ing of two-dimensional domains.

Introduction

For two-dimensional soil freezing problems with slowly moving
freezing fronts and homogeneous-isotropic materials, the Complex
Variable Boundary Element Method or CVBEM may be used as an
approximate model of the prototype system (Hromadka and Guymon,
1984). Additionally, the CVBEM permits a direct and immediate
determination of the numerical approximation error in solution

of a Laplacian equation system developing the associated approxi-
mate boundaries (Hromadka, 1984a). Thus the numerical solution
error can be evaluated by observing the deviation of the approxi-
mate boundary from the true problem boundary, and the deviation
between the approximate boundaries in the location of the freez-
ing front contour which divides the problem domain into a frozen
and thawed region (Hromadka, 1986). Thus, the modeling accuracy
is evaluated by the model-user in the determination of an ap-
proximate boundary upon which the CVBEM provides an exact
solution. Although nonhomogeneity (and anisotropy) can be
included in the CVBEM model, the resulting fully populated

matrix system quickly becomes large. Therefore in this develop-
ment, the domain is assumed homogeneous and isotropic except
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for differences in frozen and thawed conduction parameters on
either side of the freezing front. It is noted that although
this section is focused upon the prediction of steady state
interface conditions for soil freezing problems, the technique

is directly applicable to other slow-moving interface problems
where potential theory, applied for quasi steady-state conditions,
develop flux values of the state variable to within a reasonable
accuracy to the true time-stepped solution.

Modeling Approach

The modeling approach (the governing equations and modeling
assumptions are given in Hromadka, 1984b) initiates by developing
a CVBEM approximator wg(z) and wt(z) for the frozen and thawed
domains, respectively. The numerical technique determines the
analytic function w(z) which satisfies the boundary conditions

of either normal flux or temperature specified at nodal points
located on the problem boundary, I'. Because w(z) is analytic
throughout the interior domain £ which is enclosed by T, then

the real and imaginary parts of ¢(z) + i $(z) both exactly satisfy
the Laplace eguation over Q. (As discussed previously, this
property afforded by the CVBEM is not guaranteed by any of the
domain methods such as finite elements or finite differences.)

For the steady state condition, the governing heat flow equations
reduce to the Laplace eqguations. Consequently, an w(z) deter-
mined for both the frozen and thawed regions satisfy the Laplace
equations exactly, leaving only errors in satisfying the bgundarY
conditions. To develop a CVBEM steady state solution, an w(z)
is developed for each of the separate regions. Initially, both
Gf(z) and Gt (z) are defined by
0p(z) = Rk, zeQ

f £ (1)
&t(z) = &é, z £Q
where Q = Q UQf is the global domain, and the first order CVBEM
approximators are based on the entire domain. This procedure
results in simply estimating the 0°C isotherm location for the
homogeneous problem of § being entirely frozen or thawed. Let
C! be the contour corresponding to this 0°C isotherm.

The second iteration step begins by defining 2% and Qf based on
the mutual boundary of C'. CVBEM approximators w% and wg are
then defined for Qf and 2%, respectively (e.g. Hromadka, 1986)-

Examining the stream functions @% and {, estimates of the dis~
crepancy in matching the flux rates along the interface betweel
Q¢ and Q¢ can be evaluated. The (} function is now used to deter”
mine the next location of the 0°C isotherm. This is accompl-%she
by determining a new wg with the stream function values of wg
(and modified by conductivity) superimposed at the nodal values
of C!. Next, a new 0°C isotherm C* is located for wf. The neX
estimated location for the 0°C isotherm, C2?, is located by azer‘J
aging the y-coordinates of the nodal points between c! and C -
Figure 1 illustrates this procedure.



viiI-5

where T is a simple closed contour enclosing a simply connected
domain Q; ¢ is the variable of integration with ¢ €T; z is a

oint in Q; and the direction of integration is in the usual
counterclockwise (positive) sense (fig. 1l). The function G(g)

is a global trial function which is continuous on TI. -The linear
global trial function is defined by

m
G(g) = _E §j(Nj Wy + Ny “j+1) (7)

where &5 = 1 if ¢ el5, and §5 = 0 if ¢ ¢Tj. In this case, the
functions N and N443 are thé usual lineafr basis functions. From
the deflnltlon of & (z) we have

G(g)dg _ G(g)dg _ ? G(z)dg ~ ? (Nj wj+ Nj+le+l)d;
=1 1 g

Lz i=

L= 2 L~ 2

Fig. 1. CVBEM Boundary Discretization

I'. = Boundary element linking
J nodes j and j+1;
zj = Nodal coordinate for node j,
(2mey = 2105
I' = Natural boundary

The CVBEM continues by using (8) to develop m eguations as a
function of the m_unknowns associated with the undetermlned nodal
values_of either ¢ or w at each node. That is, @ =¢ + iy where

¢ and Yy are nodal values of the potential and stream functions
respectively. Given m nodes spe01f1ed on F , we necessarily know
either ¢ or ¥ (not both) at each z4. Jj —1 2,---,m Then to
estimate the remaining m nodal values, (z) is collocated in the
form of a Fredholm equation by forcing

CLASS I: $k(zj) = Re G(zj) 9a)
a

wk(z.) = Im @(zﬁ)



CLASS II: . {z.) = Re wl(z.)
J (9b)

wi(zj) = Im w(zj)

In the above, the subscript u and k refer to unknown and known
boundary condition nodal values, respectively. Because

w(z4) = wldg,dy Pk Vy), then a w(z) is determined by either (9a)
or %9b) for j =1,2,*++,m. The difference between these two
approximations is that the Class I system results in a CVBEM
approximator which matches all the known nodal-point boundary-
condition values, whereas the Class II system results in an
approximation which equals the CVBEM-estimated unknown nodal-
point boundary-condition values.

Nodal equations are determined by taking the limit as the point
z £} approaches a selected nodal point Zj el by

. 1 G(z)dg
w(z.) = lim —— —e (10)
J L= 2mi - z
2z zj T

The limiting value is also known as the Cauchy principal value,
and by using either the Class I or Class II systems, a set of m
equations results; these equations are solvable for the unknown
nodal values by the usual matrix-solution techniques such as
Gaussian elimination.

Flow Field Model

Due to the linearity of Laplace's equation, one can superimpose
as many flow components as required to obtain the general expres-
sion for the complex velocity potential of the entire system.

A potential function F(z) which described one or several point
sources of contaminant recharge, together with some groundwater
discharging wells, combined with a uniform regional groundwater
flow regime, is developed that exactly satisfies the Laplace
eguation in domain @ by

~ no Q
F(z) = w(z) + Z —— Ln {z —zi), zeQ (11)
i=l 27T

where Q; is the discharge from well i (of n) located at zj [i.e.
(+) for a sink; (-) for a source], T is the transmissivity of a
confined aquifer, and ©(z) is a CVBEM approximator representing
the background flow field. 1In Eg. (11), F{z) must satisfy the
boundary conditions

E(z) = 8¢ (z2) + i(1 ~8) y(z), z el (12)

where ¢ = 1 if ¢(z) is known; & = 0 if y(z) is known; and £(2z)
is a boundary-condition distribution along T.
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The source and sink terms included in Eqg. (11) represent an exact
model for steady state flow. Thus, £(z) must be modified in order
to develop a CVBEM 4 (z) by

n Q.
£*(z) = g(z) - ] —L In (z -z, ), z el (13)
j=1 27T

The flow field is then determined by collocating &(z) at each
node z4 €I according to the boundary-condition distribution of
£*(z).” The resulting analytic function F(z) describes the CVBEM
model. In Eq. (13), &£*(z) is defined according to the real and
imaginary parts as given in Eq. (12).

poisson Equation

Given a continuous distribution of sources (such as from precipi-
tation) in a flow field in domain 2, the steady state flow model
must be extended to accommodate the Poisson equation, with k as

a constant,

32(1) 82(1)
N - x (14)

Equation (14) can be modeled by choosing a particular solution
% such that

32¢ azcb
P P _ x (15)
ax? ay?
For example, ¢, = % (x? + y?) is a suitable choice (an infinity

of other particular solutions are available) After choosing ¢
the boundary condition function £(z) is modified in order to
develop w(z) by
n Qs
E*(z) = g(z) - ] —= Ln (z -2 '¢ (z), z eT (16)
i=1 27T
The CVBEM approximator ®(z) is collocated at nodes z. with
respect to the £*(z) function. Thus, the Poisson eqaation is
exactly solved by
R n Q.
F(z) = w(z) + ] —=1Ln (z-2;) + b, (2) (17)
i=1 27T

The above procedure can be extended to the relation

3%¢ 32¢ .
— = f(x,y) (18)
ax? dy*

by choosing a ¢, such that Eg.. (18) is satisfied, and proceeding
with the development of an appropriate CVBEM ®(z) in the same
way.
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Solute Transport Model

The solute transport mechanism is assumed only applicable to the
modeling of steady state, advective contaminants, for those
which move with the groundwater flow. The solute-transport
process is approximated by calculating point-flow velocities
given by the derivative of the potential function ¢ (z) where

$(z) = Re F(z) (19)

The extent or boundary of the subsurface contamination is then
evaluated according to point values of the flow velocity and the
time increment selected. Point flow velocities are estimated as

¢

u=-K — /e0 (20a)
ax
¢

Vv = ~K — /60 (20b)
oy

where (u,v) are (x,y)~direction soil-water flow velocities, K is
the saturated hydraulic conductivity, and 8o is the effective
porosity of the aquifer material. (A retardation factor, r, can
be included in the denominator of Eg. (20) in order to account
for contaminant transport velocities being less than the actual
field velocity or specific discharge.)

The velocity of a contaminant particle is used to estimate the
distance traveled along a flow field streamline by the
approximations

dx*
—_— = (21a)
dt
dy*
dt

where in the above (x*, y*) are the coordinates of the subject
contaminant particle.

Applications
Application 1

Figure 2 shows a completely penetrating groundwater well (dis-
charge 50 m®/hr) located at the coordinates (300, 300) in a
homogeneous isotropic aquifer of thickness 10 m. Contaminated
water is being recharged (recharge of 50 m®/hr) at a second well
(injection well) located at the coordinates (300, -300) with a
distance of 848.5 m from the supply well (discharge well).
Effective porosity is 0.25, saturated hydraulic conductivity i€
1 m/hr, and negligible background groundwater flow is assumed.
Retardation is assumed to be 1.
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pepicted in Fig. 2 are the limits of groundwater contamination
corresponding to model times of 0.5, 2, and 4 years. Addition-
ally, the CVBEM model predicts a first arrival of contamination
of time 4.33 years for injected water to reach the pumping site
which agrees well with the Javendal et al. [1985] estimate of
4.3 years.

application 2

mwo discharge wells are added at the coordinates (+500, +500)
in application 1. Figure 3 depicts the contaminant front at
0.5, 2, and 4 years. It takes 4.32 years for the contaminant
water to reach the middle discharge well (-300, 300), and about
5.58 years for the contaminant water to reach the other two
production wells.
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Fig. 2. Flowline pattern and front po;itior.s Fig. 3. Flowline pattern and front positions
between injegtion and production well betwszen injection and three production
for application 1 wells for application 3

Application 3

Let's consider the steady flow pattern produced by a single
pumping well whose strength equals to 50 m®/hr at (0,0) near a
landfill site with an equipotential boundary ¢ = 2 m along

y =~1000. It took the contaminant front 8.96 years to reach
the pumping well. Two additional injection wells were installed
at (-500, 250) and (-500, -250) with strength equal to 10 ma/hr,
to retard the contaminant front. Figures 4 and 5 depict the
front movements of these two case problems.

Application 4

In this problem, a liquid-waste disposal pond with a diameter

of 100 m fully penetrates the aguifer is added to application 3.
The center of this pond has coordinates of (500, 500) on the
Cartesian system shown in Fig. 6. Liquid level in the pond is
such that the volume rate of leachate leaving the pond is about
20 m®*/hr. It takes 15.7 years and 7.3 years for the contaminant
liquid@ to reach the discharge well from the left boundary and
from the disposal pond, respectively.
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Fig. 6. Flowline pattern and front positions
for application 4

Summary and Conclusions

In this paper, the CVBEM is used to develop a model of steady-
state, advective, contaminant transport in ground-water.
Because with the CVBEM approach the Laplace and Poisson partial
differential equations are solved exactly, all modeling error
occurs in matching the prescribed boundary conditions.

The presented model considers steady-state conditions for two-
dimensional ground-water flows. The modeling technigue is not
applicable to three-dimensional problems. However, the modelind
approach can be extended to include various steady-state boundary
conditions, regional nonhomogeneity and anisotropy.

Because the modeling technique is based upon a boundary integral
equation approach, domain mesh generators or control-volume
(finite element) discretizations are not required. Nodal point$
are required only along the problem boundary rather than in the
interior of the domain. Consequently, the computer-coding
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requirements are small and can be accommodated by many currently
available home computers.
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