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Developing Accurate Solutions of Potential Problems Using an
Approximate Boundary and a Boundary Element Method
T.V. Hromadka II

Williamson and Schmid, Irvine, California 92714, U.S. A.

ABSTRACT

The Complex Variable Boundary Element Method or CVBEM provides an
easy-to-use numerical apalogue of two-dimensional potential problems,
The boundary integral approach develops a two-dimensional approximat{on
function which solves the Laplace equation exactly over the problem
domain, but satisfies the boundary conditions, generally, only at noda}
points which are located on the problem boundary, The approximation
function, however, achieves the problem boundary condition values at
coordinates which define an approxfmate boundary. Should the approximete
boundary coincide with the true problem boundary, the exact solution to
the boundary value probliem has been achieved. Becausé the approximate
boundary s a visual representation of approximation error, the analyst
can develop accurate CYBEM approximations by use of a light-pen and

interactive CRT response to the CYBEM software.



448

INTRODUCTION
The Complex Yariable Boundary £lement Method or CVBEM has beer shown

to be a useful tool for the numerical analysis of Laplace or Poisson equa-
tion boundary value problems (Hromadka, 1984). The numerical procedure is to
discretize the boundary I' by nodal points into boundary elements, and then
specify a continuous global trial functiom G{z) on ' as a function of the
nodal values. Using the Cauchy integral, the resulting integrail equation is

R 1 {&lg)dg
w(_zol e
2mi §-z,

(1)

where &(zo) Ts the CVBEM approximation for z  eQ; and  1s a two-dimensional
simply connected domain enclosed by the simple closed contour T.
Because G{z} is continuous on T, then u(2) is amalytic over Q and can be

rewritten as the sum of two harmonic functions
a(z) = §(2) + L) (2)

Thus both ${z) and §(z) exactly satisfy the Laplace equation over Q. .
Approximation error occurs due to w{z} not satisfying the boundary con-
ditions on T exactly. However, an approximate boundary E can be developed
which represents the location of points where o{z) does equal the specified
boundary conditions such as level curves (see Fig. 1), Consequently, the
CVYBEM approximation error can be interpreted as a transformation of [‘-o-f
where the ultimate objective is to have F cofncident with . Because all
the _errit:;r of ap'proximtion 1s due to the incorrect boundary element trial
fuﬁctions,‘accuracy is increased by the addftion'of boundary nodal peints

where approximation error is large (i.e., adaptive integration).
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In this paper, a computar interactive technique is reported which
graphically displays T and T so that the numerical analyst can readily specify
additional nodal points on the CRT screen. In this fashion, the user interacts
with the CYBEM to locate the nacessary nodal point additions until T and T
are within an acceptable lavel of tolerance. For example, the tolerance may
be the aTlowable construction limits specified for a shaft (torsion problem)
for use in atrcraft design.

As T approaches ' geometrically, the analyst is assured by the Maximum
Modulus Theorem that tha maximum approximation error occurs on T and that the
governing partial differential equation (Laplace) is solved exactly,
Consequently, the final product {s the exact solution for a problem gecmetry

which {s within the construction tolerance of the design.

THEORETICAL BACKGROUND OF THE CVBEM

A complete presentation of the CVBEM development, case studies, mathematical
proofs of convergence and sxistence, and several FORTRAN computer programs are
given in Hromadka (1984). In order to develop the geometric interpretation of
modeling error associated with the approximative boundary concept, a brief
development of the CVBEM numerical technique 1s presented in the following.

Let  be a simply connected two-dimensional domain {i.e. no holes within R}
enclosed by a simple closed contour T (e.g. Mathews, 1982). Let ¢(x.y) be a

two-dimensional harmonic function over QUT; that is,

3talx, 3*o(x.y}
¢(xy)+ ony =0, (x,y)enl (3)

ax? ay?

" Then there exists a simply connected domain Q" such that QUT is 2 proper

subset of 0* and 3(x,y) 1s harmonic aver 0%,
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There exists a harmonic function y(x,y) conjugate to ¢{x,y) which also
satisfies the Ldplace equation of (3) over 0* and additionally satisfies the

Cauchy-Rieman condftions of

3{x,y)  (x.y)  deixy) 3p(x,y) )

Ix ay 3y ax

Lat 1 = x+iy be a tomplex variable over 0*. Then both a(x,y) and w({x,y} can
be written in terms of ¢{z) and w(z) such that an analytic function w(z) is
defined over O» by

w(z) = ¢lz) + 1y(z) (5)

where to simply notation, (5) can be rewritten as w = ¢ + 1y, Zeqw,
Equation (5) represents a relationship between two conjugate harmonic
functions generally called the potential (¢) and stream functions (y}.

The Cauchy fntagral theorem equates values of w(Zo) for Z, el line

integral of w(z) for ceT by

(6)

To 11lustrate the development of a CVBEM approximatfon function, w(z}, consider
w(z) to be defined over % with QUT interior of O*. Subdivide I into m
boundary elements I"J such as shown in Fig. 2. Nodal points are specified at
each element endpoint (here, a tinkar polynomial CYBEM approximation is being
developed), At each node, determine nodal valuaes of w(z) by

wlzg) 2wy = olzy) + tulzg) 2 05 + tyy 3 212,000 n
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Then a global trial function of w(z} 15 determined for zel by
m
G(z)' = ng Gj [UJ NJ(Z) + WJ+1 NJ"’ILZ)} {8)

Where the HJ(z) are tinear basis functions (see Fig. 3); and GJ =1 for zcr‘J.
and 63 = Q0 for z kl:,. Substftuting G(Z) fn place of w(c) in {6} determines a
CVBEM approximation a{z) of w(z)

(9)

Letting |{r ][ = max 123,1 - zjl. J=1,2,++,m, then it ts seen (without proof}
that

Ha  6(c) = ule). cef (10)
|rgl1-0

and therefore

lim (wlz}-w(2)) = VM — |— " . {(11)

1 J(u(c) - 6(z))de
111,110 Ity 1-0 2™ vt

r

Thus the error of approximation, e{z}, 15 defined by

ez s — | — —— {(12)

1 [ {w(g) - 6(g))dg
2ni [ §

r

Because G(¢) 1s continuous on T then &(z) 1$ analytic over 0 which implies

both ${z) and $(z), where 5{2z) = 3(z) + 19(z}, are potential functions over Q.
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In practice, (2] f3 known on rb and wiz) 18 known on a separate contour
on T where I = T UT,. Thus a(z) s not completely defined without estimates
for the unknown nodal values. To obtain such estimates, the real {or imaginary}
parts of a(z) are collocated to the m known nodal valyes, resulting inm
equations for the m unknown nodal values. Using these m nodal value estimates
along with the m known nddal values supplies the w(z) integral function with

sufficient data to determine the CVBEM approximation of (9).

CVBEM APPROXIMATION ERROR

Ganerally, numerica) approximation errors in solving potential problems is
of two forms: (i} errors due to not satisfying the governing equation over g,
and {i1) errors dye to not satisfying the boundary conditions continuously on .
For the CVBEM, (and for other boundary integral equation methods), the first
type of approximation error is eliminated due to both 3 and a being potential
functions. But o{z) does not usually satisfy the boundary conditions continuously
on T {if it did, then &(z) = w(z}}. The next step in the CVBEM analysis is to
work with 2(z) in order that u{z)-w(z).

Probably the easjest form of error to study is the development of the
approximate boundary F which represents the locations where a(z) achieves the
desired boundary values of w{z){Hromadka, 1985). Generally, the boundary
conditions are constant values of ¢ or y along boundary elements, i.e., ¢ = ¢j
for z crj or Y =y for z £ly- This set of m nodal values {¢j,¢k} are level
curves of w{z). The approximate boundary T s determined by locating those
points where $ = ¢ and ¢ = Wy Oue to the cgllecation process, f intersects

T at least at each nodal point Tocation, zj, J=1,2,¢0-,m,



To determine 5. each element FJ is further subdivided by intericr
points (specified by the program user) where w(z) is to be evaluated.
At each element interfor point, w(z) is calculated from the line integral
of {9) and the values of $ and @ are determined, If the appropriate § (or )
matches the boundary condition on rj, then f intersects T' at that point.
Dtherwise, subsequent points are evaluated by marching pointwise along a line
perpendicular to ry until the boundary condition value is reached. for point
locations interior of @, Eq. {9) is used. For points exterior of QUT, an
analytic continuation of (9) is used.

In this fashion, a set of points are determined where &{z) equals the
desired 4y OF ¥y values. The contour f is estimated by then connecting these

points by straight 1ines. Because f and T intersect at least at nodal point
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locations, ' appears as a plot which typically oscillates about the ' contour,

GRAPHICAL DISPLAY TECHNIQUE

Using a CRT graphical display software package, the CVBEM software is

designed to operate in the following analysis steps:

1. Using a 1ight-pen or batch-file data entry, the coordinates of
the problem boundary are entered by means of nodal points. This
initial data entry of nodal coordinates results in the first CVBEM
approximation function.

2. Boundary condition values are entered at noda) points. Boundary
conditions are assumed to vary linearly between nodes.

3. The CVBEM approximation function is developed.

4, The approximate boundary corresponding to the nodal point dis-
tribution s developed,
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5. The approximate boundary E is plotted on the graphics CRT super-
imposed on the true problem boundary T'. A magnification factor
may be entered to enlarge the discrepancy between F and T.

6. Using the light-pen, the analyst locates additional nodes on T
for the subsequent development of a new CVYBEM approximation
function and a new T.

7a. Go to Step 3 to repeat the CVBEM analysfs,

7b. Otherwise, if Tand T are within an acceptable tolerance, the

CVBEM analfysis effort is complete.

APPLICATION

To {liustrate the above procedure, the approximate boundary technique
is used to develop a highly accurate numerical solution of heat flow in
saturated sotl due to freezing conduit (-10°C) located beneath the soil
surface. Of concern in this problem is the precise location of the 0°-C
jsotherm which represents the steady-state freezing front within the sofl.
The ultimate Tocation of the freezing front leads to the design of the
neighboring roadway embankment to survive the freezing-thawing cycle of the
algid climate,

The problem definition for this problem is shown in Fig. 4. Also
shown in Fig. 4 are the initial nodal point locations used to develop the
approximate boundary.

Figure 5 shows the approximate boundary resulting from the initial
CYBEM solution. From the figure, F and T are very close, with the largest
discrepancy located near the freezing conduit. Consequently, only near

the conduit are additional nodes reguired.
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Using the light-pen, two nodes are added on the freezing conduit.
Figure 6 shows the resulting approximate boundary superimposed on the true
problem boundary. The maximum departure between ;‘ and I' is less than 2 cm,
which is an acceptabie tolerance for this analysis.

Using the nodal distribution of Fig. 4, modified by Fig. 6, the CVBEM
approximation provides the exact solution to the given boundary value
problem with the true problem poundary T transformed to the approximate

boundary, T.

OTHER BOUNDARY ELEMENT METHODS

The presented approximate boundary technique may be developed for
other boundary integral methods, Typically, the procedure to be used
is to expand the boundary integral approximation function into a Finite
sun of potential functions (usually, logarithm and polynomial functions
form the basis of the approximation function expansion) which are re-
defined with respect to the argument function (the angle & measured with
respect to each nodal point on the boundary) so that the approximation
function may be evaluated on both sides of the problem boundary; that is,
an analytic continuation 1s developed in the vicinity of each node to
the exterior of the problem domain,

The approximate boundary is then developed for each problem by the

procedures presented in the previous section,
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Because the approximate boundary provides an easy-to-understand re-
presentation of approximation error, its incorporation into generzl purpose
bohndary element codes should be considered. The metric for approximation
error is simply the "closeness-of-fit" between ? and ', Because E+P as
the number of nodes becomes large (placed by the preceding technique),
eventually the boundary integral provides a "probable prototype" where F
is closer to T than required by the construction tolerance of T. That is,

I' may represent a more realistic representation of the actuwal constructed

domain than the mathematical idealization of T.

CONCLUSIONS

The approximate boundary technique is used with the CVREM to
develop highly accurate numerical solutions of potential problems.
Because the approximate boundary provides an easy-to-use error evaluation
procedure, it's use in general purpose boundary element method codes

should be considered.
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Fig. 6 Additional Nodes on Freezing Conduit
Reduces Approximation Error




