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Abstract. The Complex Variable Boundary Element Method or CVBEM has been used 10 develop a simple but powerful
numerical analog of contaminant transport in a saturated, confined groundwater aquifer. The presented numerical technique is
based upon a mean-square fit of the boundary conditions which includes the effects of sources and sinks defined within the
problem domain. The numerical analogue produces locations of streamlines and the time-evolution of the contaminant front
location.

1 Introduction

Potential flow theory may be used to depict streamlines of the groundwater flow for analyzing the
extent of subsurface contaminant movement. With analytic functions, a two-dimensional flow field
may be modeled by superposition of background flows, sources and sinks, and flows introduced by
the boundary conditions. Thus, if the contaminant moves with the fluid in a steady groundwater flow,
the application of analytic functions is of particular use in its transport study.

However, when time-dependent boundary conditions are present and dispersion-diffusion effects
are significant, the steady state modeling approach becomes inappropriate. Another limitation of this
technique is that it is not so suitable as to accommodate nonhomogeneity and anisotropy within the
aquifer, because the complexity rapidly exceeds the modeling capability of the analytic function
technigue.

Due to the limitation of readily available analytic functions, many flow field problems are not
casily solvable. The CVBEM, however, provides an immediate extension. That is, potential flow
theory is utilized to solve analytically the groundwater flow field as provided by sources and sinks
(groundwater wells and recharge wells), while the background flow conditions are modeled by means
of a Cauchy integral collocated at nodal points specified along the problem boundary. The technique
accommodates nonhomogeneity on a regional scale (i.e., homogeneous in large subdomains of the
problem), and can include spatially distributed sources and sinks such as mathematically described by
Poissons equation. Detail developments of the CVBEM numerical technique are given in Hromadka
(1984a and b).

Both the boundary integral equation methods (BIEM} (Liggett and Liu 1983) and the complex
variable boundary elements or CVBEM (Strack and Haitjema 1981a, 1981b, Hromadka 1984a,
1984b) are similar in that a boundary integral is solved by numerical integration resulting in a square,
fully-populated matrix of an order equal to the number of nodes piaced on the problem boundary.
The presented numerical technique is based upon a mean-square fit of the boundary conditions which
(1) includes the efforts of sources and sinks defined within the problem domain and (2) eliminates the
need for a square matrix solution.

For steady state, two-dimensional, homogeneous-domain problems, the CVBEM develops an
approximation function which combines an exact solution of the governing groundwater flow
equation (Laplace equation) and approximate solutions of the boundary conditions. For unsteady
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flow probiems, the CVBEM can be used to approximately solve the time advancement by implicit
finite difference time-stepping analogous to domain models.

In this application, only the steady state two~dimensional flow problem will be considered in a
homogeneous domain, In other words, application of the CVBEM contaminant transport model is
restricted to steady state flow cases in which solute transport is by advection only. Due to the small
coding requirements, the CVBEM program is operable on a typical 64K homecomputer.

2 Governing equations

For steady-state flow, the equation of continuity can be expressed as
VoV =0, -(1)

where V is the velocity vector V (v, v, w) and ¢ is the fluid density. If density variation is negligible, Eq.
(1) reduces to

FV=0. 2
The velocity vector is related to the Darcys Law as follows:
V=—KyVo BN )

in which F¢ is the gradient of total potential of head, having the dimension of energy per weight, or
length. For a saturated system filled with a homogeneous fluid, ¢ includes only hydrostatic pressure
potential (¢,) and gravitational potential (G),i.¢., ¢ = ¢,+ G. In a more familiar hydraulics notation
¢ can be expressed as

_P .
¢=Lsh @

in which p is the hydrostatic pressure, y denotes the specific weight of the fluids, and A signifies
elevation in reference to an arbitrary datum. The hydraulic conductivity, Ky, is usually a function of
several variables including the moisture volumetric content (ratio of fluid to total volume), porous
media physical factors, and so forth.

Substituting the Darcy Eq. (3), into the continuity Eq. (2), one obtains

V[Ku¥$]=0. 5]

If, in addition, Kj is constant, (for example, water of a constant viscosity in a homogeneous sand), Eq.
(5} reduces to the Laplace equation.

V2 =0, (6)

3 Use of complex variables

The use of the complex variables can facilitate the solution of a boundary value problem of the two-
dimensional Laplace equation.
A complex variable function w is related to the complex variable z=x+1iy, by

w=f(@)=f(x+1iy), N
where w may be separated into its real and imaginary parts
w=¢(x,p) +iv(x,y) ®)

in which ¢ and y are both real functions of x and y. For the function w=f(z) to be analytic, the
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necessary and sufficient conditions are that ¢ and i be single-valued and that they satisfy the Cauchy-

Riemann equations, i.e.,

0p_ 2% W

3 oy’ ¥ @ ox° ©)
The lines defined by ¢ =(x,y)=const are called equipotential (or potential) lines. The lines

defined by ¢ = (x, y) =const are streamlines. Finding gradients for these two families of curves and

using the Cauchy-Riemann Egs. (9), it can be shown that the equipotential lines and the streamlines

are orthogonal.

4 Flow field model

Due to the linearity of Laplaces equation, one can superimpose as many flow components as required
to obtain the general expression for the complex velocity potential of the entire system. A potential
function F(z) which described one or several point sources of contaminant recharge, together with
some groundwater discharging wells, combined with a uniform regional groundwater flow regime, is
developed that exactly satisfies the Laplace equation in domain @ by

— s 21—
f’"(z)—co(z)+i=z1 PP In(z-z) ze®, (10)
where Q); is the discharge from well i (of n) located at z; [i.e. (+) for a sink, () for a source], Tis the

transmissivity of a confined aquifer, and &(z) is a CVBEM approximator representing the
background flow field. In Eq. (10), F(z) must satisfy the boundary conditions

{(@)=0p()+i(1 -0)y(2) zeT, (11)
where d=1 if ¢(2) is known, 6=0 if ¥(z) is known, and ¢(2) is a boundary-condition distribution
along I'.

The source and sink terms included in Eq. (10) represent an exact model for steady state flow.

Thus, ¢{(z) must be modified in order to develop a CVBEM o (z) by
o O
* = — ———— —_—.

E*(2)=&(2) ‘_; ST In(z—z) zerl. (12)

The flow field is then determined by collocating 3(z) at each node z;€I'" according to the
boundary-condition distribution of £ *(z). The resulting analytic function F(z) describes the CVBEM
model. In Eq. (12), £*(z) is defined according to the real and imaginary parts as given in Eq. (11).

5 Poissen equation

Given a continuous distribution of sources (such as from precipitation) in a flow field in domain Q, the
steady state flow model must be extended to accommodate the Poisson equation, with k as a constant.

Fo ¢

—=k. 13
52 T oy (13)
Equation (13) can be modeled by choosing a particular solution ¢, such that
P, T,
/] —k. 14
a2 Ty ¢ (14)

For example, ¢,=k(x*+y*)/4 is a suitable choice (an infinity of other particular solutions are
available). After choosing ¢,, the boundary condition function £(z) is modified in order to develop
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&(z) by
E¥=E(z)— Z -2-]; In(z—z)—¢,(z) zel. (15)

The CVBEM approximator di(z) is collocated at nodes z; with respect to the &*(z) function. Thus, the
Poisson equation is exactly solved by

F(z)=f£1(z)+i§1 5%1: In(z—z;}+ ¢,(2). (16)
The above procedure can be extended to the relation
@ﬂ%gz}f =f(x,y) (7

by choosing a ¢, such that (17) is satisfied, and proceeding with the development of an appropriate
CVBEM ®(z) in the same way.

6 Solute transport model

The solute transport mechanism is assumed only applicable to the modeling of steady state, advective
contaminants, for those which move with the groundwater flow. The solute-transport process is
approximated by caiculating point-flow velocities given by the derivative of the potential function
¢(z) where

¢(z)=Re F(2). (18)
The extent or boundary of the subsurface contamination is then evaluated according to point values
of the flow velocity and the time increment selected. Point flow velocities are estimated as

U= - ¢ /90, (19a)

- a_q;_
==K /%, (19b)

where (u,v) are (x, y)-direction soil-water flow velocities, K is the saturated hydraulic conductivity,
and 6, is the effective porosnty of the aquifer material (a retardation factor » can be included in the
denominator of Eq. (19) in order to account for contaminant transport ve]oc:t:es being less than the
actual field velocity or specific discharge).

The velocity of a contaminant particle is used to estimate the distance traveled along a flow field
streamline by the approximations

dx*
4=t (20a)
dy*

= 0. (20b)

where in the above (x*, y*) are the coordinates of the subject contaminant particle.

7 The CYBEM (using the L? norm)

The CVBEM approximation function for linear (straight-line interpolation) basis functions resultsin
the complex function (Hromadka 1984a, 1984b)

= i ci(z—z;) In (z-z;), (21
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L,

Branch-cut Fig.1. The analytic continuation of &(z) to the exterior of
from Z, QU . Note: Branch cuts along I' at nodes z;

where the ¢, are complex constants ¢;=a;+1b;, z; are nodal points (j=1,2,...,m) defined on the
problem boundary I' (simple closed contour) and In (z ~z)) is the principal value complex logarithm
function with branch cuts specified to intersect I' only at z, (Fig. 1). Then &(z) is analytic over
QuT'\{z;} and uniformly continuous over QUI". Here, Qis a simply connected domain enclosed by
In fact, w(z) is analytic over the entire complex plane less the branch cuts. The c; are calculated in the
CVBEM technique by collocating to the boundary condition values known at the nodal points
[Hromadka (1984)].

The c; are calculated in the L? norm sense by finding the best choice of ¢; to minimize the mean-
square error in matching the boundary condition values continuously along I'. Notation is used for
the known and unknown function values along I".

O) = 450 + AED)
dO)=a& Q)+ a8 D @2)

where w(z) is the solution to the boundary value problem over QuT, w(z) is the CVBEM
approximation over QuUT’, 4 is a descriptor function such that 4=1,i depending whether the
associated £, or &, function is the real or imaginary term and { is the notation for the case z& I'. Then
the objective is to compute the ¢; which, for a given nodal distribution on I', minimize

1=)&-&3= [ & —&)*dr. (23)

8 Orthogonal CVBEM functions and the best approximation

The CVBEM approximation function of (21) can be written as

1

a(z)=). ¢f;, (24)

L}

i=1

where f;=(z —z;) In (z ~z;). The Gram-Schmidt procedure can be used to orthogonalize the f; such
that

6@~ ¥ 10, @)
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where y; are complex constants and
1, j=k
(gj,gk)—£ gjgkdl"—{o, ek (26)

In (26), (g;,9s) is the notation for the inner product.

The boundary conditions on I are given by & where ¢({) is known continuously on the contour
I',and () is known continuously on I'y where I'y + I'y =TI and I'y n I", only at nodal points. The I'y
and I'y can be composed of a finite number of contours. Then the y; are computed which minimize

I=rJ' (#()—Re Engj)df-krf (¥ () —Im Zy;9,)dr". 27

Because the g; are orthogonal, the y; are directly computed by

;=& 9)/(g5,9))- {28)
Then the best approximation (in the L,-norm) is given by

a{(z)= ;1 (¢x.91)9;/(a5,95)- ' (29)

The ¢; are then computed by back-substitution of the y;g; functions into the ¢; f; functions. It is noted
that by this approach, the ¢; are computed directly without the use of a matrix system generation or
matrix solution. This is important due to boundary integral methods resulting in the solution of fully
populated, square matrix systems.

9 Orthogonal vector systems and the best approximation

Let F; be linearly independent vectors of dimension n, for j=1,2,...,m. Then the Gram-Schmidt
procedure can be used to construct orthogonal vectors G; of dimension 7 such that the dot product

gives
i, j=k
G’G"_{O, J¥k

Let B be a vector of dimension n. Then the best approximation of B in the subspace spanned by the
G, is given by the vector 4 where

(30)

j=
with
n;=(BG)/(G,G)). : (32)

The corresponding approximation to B with respect to the original F; vectors is
A=Y C;F;, (33)
i=1

where the C; arec computed by back-substitution of #;G; into the respective F; components.

10 Representation of the CVBEM approximation function by a dimension mn vector space

Let I' be discretized into m boundary elements I';, j=1,2,...,m. On each element, define n interior
evaluation points (usually evenly spaced), resulting in a total of mn points ¢, on I'. For each function f;
(see (24)), develop the vector F; of dimension mn by

F={ft); i=1,2,...,mn}. (34)

In (34), the coordinates of ¢, are consistent for each vector F;, j=1,2,...,m, such that points
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(fy,22,...,1,) occur in boundary element I' . The resulting vectors F; form the basis of a subspace F,,,
where each vector F € F,, is given by

i=

Similarly the boundary condition values defined on I' can be represented by the vector B where
B={S(t); i=1,2,...,mn}. 36)

The best approximation of the vector B {in the |,-norm analogy of the L;-normj by a vector 4 € F,,, is
given directly by (31) and (32). The corresponding estimate of the best approximation @(z) is given by

4@)= Y. n,6;. 37)

Thus in the above, the best approximation for d(z) is estimated by using the best approximation from
a vector space spanned by the vectors G;.

11 Implementation

A FORTRAN computer program was prepared which developed the best approximation in a vector

space (of dimension mn) in order to estimate the ¢; coefficients of Eq. (21). The basic steps used in the

program are as follows:

Data entry of nodal point (m) coordinates and boundary values.

Number of evaluation points entered (n).

Develop dimension mn vectors F;, j=1,2,...,m.

Develop dimension mn vector B of boundary values.

Develop orthogonal vectors G, j=1,2,...,m.

Compute vector coefficients y;.

Back substitute G; vectors into F ; vectors and compute the coefficients C;; j=1,2,..., m.
8. Define ¢;=C; to determine the CVBEM approximation function, &(z).

It is noted that c;=a;+if;. Thus the above program steps involve two vectors for each C e
That is from (21),

NN kW -

m

d(2)= Y aji(z~z)ln(z—z)}]+ Zl Biliz—z;) In (z - z))1. (38)

=1 j=
Hence the f;corresponding to the ¢; have two separate components which are used, respectively, with
the o; and §;. Consequently, for m nodes there are 2m coefficients to be computed.

12 Applications of CYBEM program

Application 1 Fig. 2 shows a completely penetrating groundwater well (discharge 50 m®/Ar) located
at the coordinates (300, 300) in a homogeneous isotropic aquifer of thickness 10 m. Contaminated
water is being recharged (recharge of 50 m?/hr) at a second well (injection well) located at the
coordinates (300, —300) with a distance of 848.5 m from the supply well (discharge well). Effective
porosity is 0.25, saturated hydraulic conductivity is 1 m/hr, and negligible background groundwater
flow is assumed. Retardation is assumed to be 1.

Depicted in Fig. 2 are the limits of groundwater contamination corresponding to model times of

0.5, 2 and 4 years. Additionally, the CVBEM model predicts a first arrival of contamination of time
4.33 years for injected water to reach the pumping site which agrees well with the estimate by Javendal
et al. (1985) of 4.3 years.
Application 2: An additional discharge well is added at the coordinate (500, 500) in application 1.
Fig. 3 depicts the contaminant front at 0.5, 2 and 4 years. Because the upper discharge well is slightly
closer to the injection well, it takes 4.22 years and 4.61 years for the contaminant water to reach the
upper and lower discharge wells, respectively.
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Figs. 2 and 3. Flowline pattern and front positions between injection 2 and production well for application 1; 3 and two
production wells for application 2
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Figs. 4 and $. Flowline pattern and front positions between injection 4 and three production wells for application 3; § and
productions wells for application 4

Application 3: Third discharge well is added at the coordinate {— 500, —500) in application 2.
Figure 4 depicts the contaminant front at 0.5, 2 and 4 years. It takes 4.32 years for the contaminant
water to reach the middle discharge well { —300, 300) and about 5.58 years for the contaminant water
to reach the other two production wells.

Application 4: In this problem, the injection well and the discharge well are located at { —300,0)
and (300,0), respectively. A differential potential of 2 m is assumed across the western and eastern
boundaries. The potential along the northern and southern boundaries are assumed to be linearly
distributed. Fig. 5 depicts the contaminant front at0.5, 1, 1.5 and 1.98 years. The contaminant water
takes about 2 years to reach the discharge well.



T. V. Hromadka and C. C. Yen: A model of groundwater contaminant transport using the CVBEM 113

1000 Y 1000 I r Tt

500 = 500f~ Y -
= - g 0 ‘--'-'-"-"“K"\:.::Dischurge well —
5 2 LYROPS Iy ™ s,
=] i = § AL

-500 - 5004 - ."" ," —

7/ - =~ Sreamlice
-10600 1 000 1 . | .
1000 500 0 500 1000 o0 -500 0 500 1000
Dislonce (m) Distonce (m)

Fig. 6 Fig. 7

Figs. 6 and 7. Flowline pattern and front positions between 6 equipotential boundary and discharge well; 7 two retarding wells
and production well for application 5

Application 5: Let’s consider the steady flow pattern produced by a single pumping well whose
strength equals to 50 m?®/Ar at (0,0) near a landfill site with an equipotential boundary ¢ =2 m along

= —1000. It took the contaminant front 8.96 years to reach the pumping well. Two additional
injection wells were installed at (500, 250) and (500, —250) with strength equal to 10 m?/Ar, to
retard the contaminant front. Fig. 6 and 7 depict the front movements of these two case problems.

12 Conclusions

In this paper, the CVBEM is reanalyzed to eliminate the need for a square matrix solution. The new
method is based on generalized Fourier series theory, and it satisfies the boundary conditions in a
least-square (L?) sense. The resulting model is identical in capability as the previous CVBEM model
[Hromadka (1984b)], but provides the significant improvements of 1. satisfying boundary conditions
in a L?-norm, and 2. eliminates the matrix generation requirements.

The new CVBEM has been used to develop a numerical analogue of background potential flow in
the domain where sources and sinks are defined. The program develops flow-fields and the time
evolution of the flow-field motion for contaminant transport. Although this study focuses upon
groundwater fiow problems, the numerical analogue can be extended to other equivalent problems
such as involved in heat and mass transport in homogeneous domains.
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