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A simplification of the two-dimensional (2-D) continuity and momentum equations is the diffusion
equation. This simpler dynamic model of two-dimensional hydraulics affords the hydrologist a
means to quickly estimate floodflow effects for overland flow. To investigate its capability, a
numerical model using the diffusion approach is applied to a set of hypothetical watersheds in
order to develop unit hydrographs. The model is based on an explicit, integrated finite-difference
scheme, and the floodplain is simulated by use of topographic elevation and geometric data.
Synthetic unit hydrographs (S-graphs) developed from use of the simple 2-D model show
interesting correlations to the well-known S.C.S. unit hydrograph (S-graph).

INTRODUCTION

A frequently used technique for modelling watershed
rainfall-runoff effects is the unit hydrograph approach.
When given ample stream gauge data, an averaged S-
graph can be developed for use in studying severe storm
hydrology*. However when stream gauge data’ is
inadequate, synthetic S-graphs are often employed based
on similar watershed characteristics.

In this note is reported a technique for developing a
synthetic S-graph for overland flow based on the diffusion
model of the full hydrodynamic equations for two-
dimensional flow. The results of this study show a strong
correlation to the well-known S.C.S. unit hydrograph S-
graph equivalent®.

One approach to studying watershed overland flow
flood wave propagation is to simply estimate a maximum
possible flowrate and route this flow as a steady state flow
through the downstream reaches. A better approach is to
rely on one-dimensional (1-D) full dynamic unsteady flow

_equations (e.g. St. Venant equations). Some sophisticated
[-D models include more terms and parameters to
account for complexities in prototype reaches which the
basic flow equations cannot adequately handle. However,
the validity of the 1-D model is questioned when studying
flood wave propagation in a two-dimensional (2-D)
domain. There are some 2-D models employing full
dynamic equations. Among them, one particularly aimed
at flood flow analysis is by Katopodes and Strelkoff3.
Associated with the increased power and capacity of 2-D
full dynamic models, are the greatly increased boundary,
initial, geometry and other input data and computer
memory and resources requirements as well as
computational effort.

A 2-D diffusion hydrodynamic model described in this
note!?* appears to offer a simple and economic means
for the fast estimation of overland floodflow effects. It can
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be used to develop a synthetic S-graph using topographic
elevation data and estimates of the Manning’s friction
factor. The study objective is to estimate the S-graph
resulting from a severe runoff event over a two-
dimensional domain where overland flow effects
dominate the flow hydraulics.

MATHEMATICAL DEVELOPMENT FOR TWO-
DIMENSIONAL MODEL

The set of (fully dynamic) 2-D unsteady flow equations
consists of one equation of continuity
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dq, 0 (q%\ 0 (q.a, cH

k. AR WL o § N “Z}=0 12
ot +@x<h o\ h JTI St =0 @
éq, 0 (q; ¢ (q.4, CH\
Bt+5y<h e G L Sf’+ay =0 (3

in which q,, q, are flow rates per unit width in the x, y-
directions; S,., S, represent friction slopes in x, y-
directions; H, h, g stand for, respectively, water-surface
elevation, flow depth and gravitational acceleration; and
x, y, t are for spatial and temporal coordinates.

The above equation set is based on the assumptions of
constant fluid density with zero sources or sinks in the
flow field, of hydrostatic pressure distributions, and of
relatively uniform bottom slopes.

The local and convective acceleration terms can be
grouped together such that equations 1, 2 and 3 are
rewritten as
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where m, represents the sum of the first three terms in
equations (3) and (3) divided by gh. Assuming the friction
slope to be approximated by steady flow conditions, the
Manning’s formula in the US customary units can be used
to estimate
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Equation (5) can be rewritten as
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The symbol S indicates the flow direction which makes an

angle of #=tan~'(q,/q,) in the positive x-direction.
Values of m are assumed negligible by several

investigators'+2'%, resulting in the simple diffusion model,
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The proposed 2-D flood flow model is formulated by
substituting equation (8) into equation (1),
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NUMERICAL MODEL FORMULATION (GRID
ELEMENT)

For uniform grid elements, the integrated finite difference
version of the nodal domain integration (NDI) method is
used. For grid elements, the NDI nodal equation is based
on the usual nodal system shown in Fig. 1. Flow rates
along the boundary I' are estimated using a linear trial
function assumption between nodal points.

For a square grid of width §,

qlrg = — (K |reXHg —Hc)/d (10)
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Inequation (11), hand nare both the average of the values
of C and E, ie. h=(hc+hg)/2 and n=(n-+ng)/2.
(Additionally, the denominator of K is checked such that
K isset to zero if [Hy — H| is less than a tolerance such as
103 ft. )

The model advances in time by an explicit approach

H*'=K'H" (12)

where the assumed input flood flows are added to the
specified input nodes at each timestep. After each
timestep, the hydraulic conduction parameters of
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equation (11) are reevaluated, and the solution of
equation (12) reinitiated. Using grid sizes with uniform
lengths of 1000-feet, timesteps of size 5.0 sec were found
satisfactory. Verification of the 2-D hydrodynamic model
is given in Hromadka? for the class of problems involving
severe peaked flood hydrographs such as those resulting
from dam-breaks.

DEVELOPMENT OF SYNTHETIC S-GRAPHS

The diffusion model can be used to develop a synthetic S-
graph for a watershed where overland flow is the
dominating flow effect. The watershed is discretized by
uniform node-centred grid elements (see Fig. 1). The data
required are an elevation and a Manning’s friction factor
for each nodal point.

To develop the S-graph, a uniform effective rainfall is
assumed to occur over the entire watershed. For each
timestep (e.g. S-seconds), an incremental volume of water
is added directly to each grid-element based on the rainfall
intensity (a constant in this application), resulting in an
equivalent increase in the nodal point depth of water.
Because the discretized model is two-dimensional, the
runoff flows to the selected point of concentration by
simulating overland flow in the watershed.

The following applications show S-graphs developed
for several watersheds with various cross-slopes, channel
slopes, areas and friction factors. Figure 2 shows the
watershed discretization used for the S-graph develop-
ment shown in Fig. 3. Included in Fig. 3 are the S.C.S. S-
graphs for a triangular and a curvilinear unit hydrograph
representations. It is seen that the diffusion model closely
matches the S.C.S. S-graph. Figure 4 shows other S-
graphs developed for different watershed configurations
and conditions. From the figure, all S-graphs have a
strong similarity to the S.C.S. S-graph.

MODELLING SEVERE STORM RUNOFF

The 10 square mile Cucamonga Creek watershed
(California) is shown discretized by 1000-foot grid
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ns) W3 @y oy Wy (I (s) elements in Fig. 5. A design storm (Fig. 6a) applied by the
" 20 3 44 55 66 77 US Army Corps of Engineers and resulting runoff
hydrograph is shown in Fig. 6b. Also shown in Fig. 6b is
the corresponding diffusion model response for this
14) 10 2! 32 |43 54 165 7% canyon flow. From the figure, the diffusion model
develops runoff quantities which are in good agreement
with the values computed using a derived unit
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Fig. 2. Test watershed discretization Fig. 3. Diffusion model produced S-graph and S.C.S. S-
graphs
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Fig. 4a. Diffusion model produced S-graphs for various Fig. 4b. Diffusion model produced S-graph for various

grid sizes (nodal elevations held constant)
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Fig. 5. Cucamonga Creek discretization
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DRAINAGE AREA IN SQUARE MILES

HYETOGRAPH COMPUTATION

UNIT
PERIOD AMOUNT

1 .07 (R(180)-R(60))
2 .05 (R(180)-R(60))
3 .11 (R(180)-R(60))
4 .05 (R(180)-R(60))
5 .20 (R(180)-R(60))
6 .22 (R(180)-R(60))
7 .16 (R(180)-R(60))
8 .16 (R(180)-R(60))

9 .48 (R(60)-R(30))
10 .52 (R(60)-R(30)
11 1.00 (R(15)

12 1.00  (R(30)-R(15))

LOCAL PROJECT STORM
DEPTH AREA DURATION CURVES

Fig. 6a. Design storm

CONCLUSIONS

Interesting results have been obtained using a diffusion
model of two-dimensional hydrodynamics for overland
flow. The synthetically derived S-graphs show striking
similarities to the well-known S.CS. S-graph. The
diffusion model affords benefits to the hydrologist in that
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Fig. 6b. Modelled runoff hydrographs

two-dimensional flow effects are modelled, and data
requirements are minimal; topographic elevations and
Manning’s friction factors.

Further research is on-going to examine the sensitivity
of model results to watershed shape factors, and the use of
diffusion model in a complete, physically based
hydrologic watershed model.
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