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Instead of developing a square order m matrix system for m boundary nodes by collocating the
boundary integral equation at nodal point boundary values, the Complex Variable Boundary Element
Method is now expanded as a generalised Fourier series — eliminating the matrix solution entirely,
Boundary conditions are approximated in a ‘mean-square’ error sense in that a new vector space norm
is defined which is analogous to the L% norm, and then minimised by the selection of camplex coeffi-
cients to be associated to each nodal point located on the problem boundary, I'. For engineering
problems where the boundary condition values and their first derivative are piecewise continuous
on I (i.e. Dirichlet conditions), the new CVBEM approximation converges almost everywhere {(ae) on
T as guaranieed by well-known generalised Fourier series theary.

1. INTRODUCTION

1.1. Objectives of paper

The objective in using the Complex Variable Boundary
Etement Method {or CVBEM) is to approximate analytic
complex functions. More specifically, if w is a two-dimen-
sional complex function which is analytic over a simply
confiected domain £ with boundary values w() for { €T
(T is a simple closed contour), then the real (¢) and imaginary
(¥ parts of w = ¢ + iy both satisfy the Laplace equation
over £. Thus, two-dimensional flow field problems can be
solved numerically by the CVBEM.

The development of the CVBEM for engineering applica-
tions is detailed in Hromadka! Generally speaking, the
CVBEM is 2 boundary integral lechnique and, consequently,
a literature review of this class of numerical methods can
be found in other books such as Lapidus and Pinder?

However in this paper, the CVBEM departs from the
other boundary integral methods by using a new unpub-
lished technique in satisfying boundary conditions. Instead
of developing a square order m matrix system for /1 bound-
ary nodes by collocating the boundary integral equation at
nodal point boundary values, the CVBEM is now expanded
as a generalised Fourier series — climinating the matrix
solution entirely. Boundary conditions are approximated in
a ‘mean-square’ error sense in that a new vector space norm
is defined which is analogous to the L2 norm, and then
minimised by the selection of complex coefficients to be
associated to each nodal point located on the problem
boundary, I'. For engineering problems where the boundary
condition values and their first derivative are piecewise
continuous on I" (i.e. Dirichlet conditions), the new CVBEM
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approximation converges almost everywhere (ge) on T as
guaranteed by well-known generalised Fourier series theory.

In this paper the new CVBEM approach will be developed
with mathematical rigor before presenting applications of
the numerical technique. In order to keep the paper concise,
the development of CVBEM approach, the definition of the
new inner-product used, the definition of the working
vector spaces, proofs of convergence of the generalised
Fourier series expansion, and the proof of boundary con-
dition convergence are all presented ir. standard Theorem/
Proof form.

The final section of the paper illustrates the new numeri-
cal technique by solving several flow field problems where
solutions are known.

1.2, Notation
Let « be an analytic function over £2,
The following notation is used in this paper:

LY = conveX, simply connected domain

r = simple closed contour forming the boundary of
Q

tz =teN e i=Re® for0<o <20

¢ =Rew,w=¢+ iy

v =Imw

iw ! — (¢2 + wQ)l!’Z

du  =|dELEED

hwll, ={fplw)® dp'?

{z;} = nodal points defined on I’

I’ = boundary element (line segment)} connecting zj,

Zis1

I By =T,V l"\(,_ =T and IyN T, at two points of 1",
Here ¢ is known on T’y and ¢ is known on re
where o= ¢ + i
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(w,w) =I5, ¢"du+ fr, ¢7du

Hwll = (w, w)*?

L = length of I"

! = max {z;,, — 2|, for nodes {z;} €T

Ze = centroid of {2 oriented such that z, = 0 + ¢
& = a ¢o-ordinate reduction factor, 0 <8 <}
I ={8t,{ €T}

Q, = {62, €Q}

Q =QuUT

95 = Qa J Fs

A = number of angle pointson I’

wj = nodal value w(z)), w; = &; + iY;

B = branch-cut angle of In;(z — z;)
7(¢) = linear basis function defined on { €T

w; approximate nodal value at z; €I

1.3. Definition of working space, Wg

Let 2 be a simply connected convex domain with a
simple closed piecewise linear boundary I' and with its
centroid located at 0 + 0i. Then w € Wq has the properties

(i) w(z)is anatytic over

(i) lim J‘ @) PAT <M <o
§—1

r

1.4. Definition of the function || « )

A key element in the CVBEM development of this paper
is the definition of a norm and inner-product. In the follow-
ing sections, insight into the new norm function is presented
by an analogy to the well known L*(I") norm and innet-
preduct.

The symbol [} w i for w € Wy, is notation for

12
HwH=[J‘(Rew)2 du + J. (Imw)? du]
r

s v

The symbo! §l w i for w € Wg, is notation for
g
bol,=| '[ P, =1
r

Of importance is the case of p = 2:
112 12
pot=] fra@reas] < { (1rewP s mer Jau|
r r

1.5. Almost everywhere {ae) equality

A property or function which applies everywhere on a
set F except for a subset E' in £ such that m(E") = 0 is said
to apply almost-everywhere {ge). Because sets of Lebesque
measure zero have no effect on integration, almost-every-
where (ae) equality on [" indicates the same class of ele-
ment. Thus for w € Wy, [w]| = {w € Wg :w(¥) are equal
ae for L E€T'}. For example, [0] = {w € W 1w () =0 ae,
{ €ET'}. When understood, the notation ‘[ ]’ will be dropped.

1.6. Theorem (relationship of fl w ] to fw llz)
Let w € Wg. Then w3 = lw? + Liw 1%

Proof
Let w = ¢ + &Y. Then
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Nwl =] lw@) P du

r

p
= | (@*+yHdu

r

= | ¢*du+ I % du + J. yidp+ I V¥ du

P‘v'l I‘¢ FU/

To

=fwi?+ I (—v)du+ J. ¢ du
I‘¢ Pnp
=W+ |liw]?

1.7. Theorem
LetwEWg. Then |lwll;=0=Nwl =0.

Proaf
keollz=0implies | w3 = llw | + llico|I* = 0.

1.8, Theorem
Let w€Wq. Then |l wll <l wlls-

Proof
Let w = ¢ + ). Using Theorem 1.6,

lwlz=lwi*+)iwl?

Because || iw |20, then [w < wif.

2. MATHEMATICAL DEVELOPMENT

2.1. Discussion: a note on Hardy spaces

The HP spaces (or Hardy spaces) are well documented in
the literature (e g. Duren®). Of special interest are the E7 (§2)
spaces of complex valued functions. If w € E?(£2), then w
satisfies the conditions of Definition [.3 for Wg, where
Hew(88) |l2 is bounded as & — !, Finally, if w € E2(£1) then
the Cauchy integral representation of wi{z) for zER
applies. It is seen that Wg C E%4(Q).

2.2. Theorem (boundary integral representation)
Let w € Wy, and z €52, Then

1 fe®&
w(2)_2m']. t—z

Proof

For w € Wg, then w €E?({2) and the result follows
immediately.

2.3. Almost everywhere (ae) equivalence

For w € Wq, functions x € Wq which are equal to w ae
on I represent an equivalence class of functions which may
be noted as [w). Therefore, functions x and y in Wy are in
the same equivalence class when

jlx_ylclu=0
T
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For simplicity, «» € Wq is understood to indicate [¢]. This
follows directly from the boundary integral representation
of w(z) for z&Q, and the fact that integrals over sets of
measure zero have no effect on the integral value,

2.4. Theorem (uniqueness of zero element in Wg)

Let wEWgq and ¢ =0 ae on [y and ¢ =0 ae on Iy
Then w = [0] € Wg,.

Proof
Letz €82, Then
1 J‘w(i’)di‘ 1 e®d 1 %
- [SOS_L [0 1w
2ni {—z 2mi t—z 2 {—z
Ly Ty

due to ¢(§) = 0 ae on [y and ¢ () =0 e on T, Therefore
an equivalent function w*=¢* + ™ can be formed
where w* € W and

* _{0, z€T,
o= #(z), z€T,

0 zell
e ) W
Ve {w(z), Z€T,

and w(z) = w*(z) forall z €42,

By use of the Riemann Mapping Theorem and Cara-
theodory’s Extension of the Riemann Mapping Theorem,
any two bounded simply connected domains can be con-
formally mapped onto each other with a one-to-one corre-
spondence (from the continuous extension of the conformal
mapping) of the boundary points. In a recent textbook,
Mathews® applies the well-known Cauchy-Riemann equa-
tions and shows that for the case of ¢* being constant on
Ty and 39*/on =0 on T, that w* is a constant complex
number over 3. By continuity, ¢* =0 over £ and, by a
similar argument, Y* = ¢ over &. Thus w* = 0 over £ and,
consequently, w = 0 over £2. Hence, w = [0].

2.5, Theorem (Wq is a vector space)
Wy, is a linear vector space over the field of real numbers.

Proof

This follows directly from the character of analytic
functions. The zero element has already been noted by [0]
in Theorem 2 4,

2.6. Theorem (definition of the innter-product)
Let x,¥,z € Wq. Define a real-valued function (x, ) by

x,nN= j Rex Rey du + j. Imx Imy du

F¢ rq'!
Then (.} is an inner-product over Wg.

Proof

It is obvious that (x, 3} = (¥, x); {kx,»)=kix,y)fork
real; (x +y,2) = (x,z) + (v, z); and (x, x) > 0. By theorem
24, (x,x)=0 implies Rex =0 ae on Ty and Imx =0 ¢e
ony andx = [0] € Wq.

Three theorems follow immediately from the above.

2.7. Theorem (Wg, is an inner-product space)

For the defined inner-preduct, Wy, is an inner-product
space over the field of real numbers.

2.8, Theorem (i| w |l is a norm on Wg)
A norm is defined by lix || = (x, x)'"* for x € Wg,.

2.9. Theorem
Letx € Wg and [l x|{ = 0. Thenx = [0].

3. THE CVBEM AND Wq,

3.1, Definition

Let the number of angle points of I" be noted as A. By a
nodal partition £, of I', m = A{(n — 1) nodes {z; } are defined
on I' such that a node is located at each angle-point of T
and the remaining nodes are distributed on T'. Nodes are
numbered sequentially in a counterclockwise direction along
I". The scale of P, is indicated by / where /= max [2;,,—2; .
Thus 1 nodes are equally spaced along each line segment.

3.2. Definition

A boundary element [} is the line segment joining nodes
z; and zj4;.

3.3. Theorem
Let P, be defined on I". Then

where m = A(n — 1).

Proof

Follows from I' being piecewise linear, and the construc-
tion of P,.
3.4. Definition

A linear basis function N,-(;) is defined for{ € by

¢ _zj—l)/(zf —zjy), §E€IGL
NG =S G~ DG —2), (ST,
0, €I, UT;

The values of N;({) is found to be real and bounded as indi-
cated by the next theorem.

3.5. Theorem
Let V;({) be defined for node z; €. Then 0N Z)< 1.

3.6. Definition

Let P, be defined on I with m = A and with scale /. At
each node z;, define nodal values w; = ¢; + iy; where ¢;
and ; are real numbers. A global trial function G, () is
defined on I" by

Cm(§)= 3 N oy
=1

!
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3.7, Theorem
G (D) is continuous on I,

3.8, Discussion

As a result of w(§) € L3(IY), then w(}) is measurable on
I’ and for every € >0 there exists a continuous complex-
valued function g(¢) such that

lw@) —g@®i<ef2

Choosing G,, ({) to approximate g({) by

NGmE)—g) I <e/2
then

o)~ Gn@h<lw)—e@)h
+gl®) —GmOl1<e

3.9, Theorem
Let w € Wq. For € > Q there exists a Gm(§) such that
lw@) ~Gm) i <e.

Proof
Follows from the discussion in 3.8.

3.10. Discussion
The CVBEM approximation function &,,(z)is developed
from the singular integral for a partition P, of I by

j‘Gm(s”)dK

19 i
(g " z € (1)

1
Wm(2)=—

where
m -
Gm(f)= Z N () o
i=1
is the global trial function chosen to achieve
fw@ —~ Gu®) i <e
for wEWq and £ 0. Expanding G, in the integrand gives

R mo1 FN(E) &y iy
=y — |- e 2
“m (Z) ]';1 2ni [:[ {—z z ( )

Appendix A shows that &, {z) can be written as
m
Om@ =R+ ¥ ¢z-z)InGz~z), z€Q ()
im

where R (z) is a first degree complex polynomial resulting
from the Zm-circuit along T about point z; the complex
logarithm is with respect to point z (the branch cut is a ray
originating from point z €Q); and the ¢; are complex
constants ¢; = a; + ib; where the 4; and b; are real numbers.
The problem now can be restated as how to choose the best
values for the ¢; (and the Ry(z) constants) such as to mini-
mise a defined norm. Because ¢ is known only on Py and ¢
is known only on Ty {w =¢ +i¥), llw — @y llz is unde-
fined. Therefore, the constanis will be chosen to minimise
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the newly defined nom Jlw —&,, ) where the goal is
Nw— @l > 0= &, (z) > w(z)forallz € Q.

For development purposes, the In{z — z;) functions are
replaced by In;(z —z;) functions where logarithm branch
cuts are rays from each z; which lie exterior of £2 — {z;}
(see Appendix A).

Letting Ry(2) = ¢pa1 + Cmaz 2, the CVBEM approxima-
tion used is now defined as

N m+2
Gu(@=Y T, )
j=1
where
z—zpiniz—z), j=L2,....m
T, ={ 1+0i, JEmt
z, j=m+2

By the use of the Inj(z —z;) functions, w,,(z) is analytic
over (2 except at the nodal points, and &, (z} is continuous
over £. In fact, &, () is analytic everywhere except along
the branch cufs.

If ¢;=a;+ib; is substituted into (4), the CVBEM
approximation can be written with respect to real number
coefficients 7; as

N 2(m+2)
Wplz) = Z 'ij;: ()
i=1
where the f; functions are given by
i =z —zy)Imz —z9) 1
f = ify
Fam—1 = (2= 2y ) Iny, (2 ~ zp,)
f2m = iflm -1 } (6)
fama =1
Famea =i
f2m+3 =2z
fameny =iz

3.11. Theorem (linear independence of nodal expansion
functions)

The set of functions
{(z-z,-)ln,»(z “Zj), f= 1,2, coo,mt 1}

are linearly independent,

Proof

Using induction, let the first m funciions are linearly
independent, but the (m + 1)-function is linearly dependent
on the other m functions. Then for complex constants ¢y,

m
em1(2 = Zims) Wy @ — Z;mas) =} (2 —2z;)Inilz —2;)

i=1
Taking the second derivative with respect to z gives

Cm+1 il &y
= ! ,m=1

= -, forz#zg, k=1,2,...
(Z *qu.l) i=t (Z - Zj)
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Rearranging terms, the above implies that

m m m

emrt ME 20 =@ —2Zma) ¥ ¢ T1 (2 —24)

k=1 /=1 k=1
K#j

which isvalid only if e, =0 foreachk = 1,2,...,m+ 1.

3.12. Discussion

From the previous theorem, the set of functions {T;} of
{4) are also linearly independent and, more importantly in
this development, the {f;} are linearly independent with
respect to the real number field. Thus for a given number m
of nodes on ', the functions {f;/=1,2,...,2(m + 2}
forms a basis for the vector space spanned by the {f},
noted by Wé(m”). In this notation, m indicates the number
of nodes defined on I' (always, m = A), and the hat indi-
cates the CVBEM approximation function vector space.

The CVBEM objective is to choose a Wy, € WE which
minimises [| @ — &,y | where w € Wq and the nodes {z;}
are fixedon I,

3.13. Theorem
Let wE Wy and z €81, For every € > 0 there exists a
CVBEM approximation &, such that {w(z)— G, (2)|1<e.

Proof
Let d=min|{—z|, (€. Then for a global trial
function G}, {§) defined on I

1 -—-Gm d
lw(@) — @plz) | = ‘—j M
2ni t—z
T

1 N/
S—Nw—Gy,lly<— -G
2nd e m i 21rd”w mlla

Choosing G, (see section 3.10) such that lw — G, I, <
2ndef\/L (or lw —Gp,ll; < 2rde) guarantees the desired
resulf,

More insight as to the power of the CVBEM is provided
by an analogy to convergence in measure:

3.14. Theorem
Let € > 0. Then there exists a 0 <& <1 such that the

j jdﬂ(e and lim |w(@)—@,E)I=0
-0
-2 m—e

Proof

Choose 0 <& <1 such that the area of £ — £ is less
than e, letd = (1 —8)min |{ |, { €T where w € Wg. Then
by Theorem 3.13, the required result follows.

3.15. Discussion

The above theorems discuss the existence of a CVBEM
approximation <, (z) which converges in measure to w(z).
That is, for an arbitrarily small (1 — 8)-strip inside of T,
W)+ w(z) for all z€8; as.m > and {-+0. To
develop the CVBEM approximation ), (z), the defined
norm [fx || for x € Wy is used.

To proceed, the {f;} are orthonormalised by the Gram-
Schmidt procedure to the set of functions {g;} using the
defined innerproduct on Wq. That is g, = fi/ll fill, g2 =

(fi— (fugdeg)llfs—(f2.g)gill, and so forth. With
respect to {g;},

) 2(m+2) .
Wz} = z ¥i8;(2)
i=1

where the ¥; are gencralised Fourier coefficients to be deter-
mined. It is noted that the g,(2) are finite combinations of
the fj-functions, The value of {{w — &, is minimised
when ¥; = (w, g).

By back-substitution, the v corresponding to the {f;}
can be evaluated. In this fashion, the CVBEM approximator
Wm(z) is developed for w € Wq and the provided bound-
ary conditions of ¢ defined on 1"¢, and Y defined on Iy,

Because Wg is an inner-product space with the defined
inner-product, Bessel’s inequality applies.

4. THE SPACE W3

4.1. Definition

A subspace of Wq are those elements which are analytic
over £2. Thus, w € Wﬁ implies w is analytic over Q U T,

4.2. Thegrem
WE is a linear vector space over the field of real numbers.

Proof

Follows from the parent space Wg,. However, it is noted
that ge equality is unnecessary due to w € W4 implies
continuity over £2.

4.3, Theorem
W4 is an inner-product space using the defined inner-
product.

Proof
Of interest is showing (x,x)=0=x=0. Green’s theorem
gives

]
I(tﬁi +¢3)d = I¢a—¢dP+ Icpv’wn
n

2 r Q
where ¢ and ¢, are partial derivatives of ¢(x, ) in the x-
and y-direction, and 3¢/dn is a normal derivative along [
But [3¢fon | = [|8y/0s | where s is a tangential co-ordinate
along T' and the Cauchy-Riemann relations apply. Thus

V*0=0 over { due to w=¢+ iy and wE WA. Also,
¢ =0 on Fyand 3y /ds = 0 on I, by assumption. Thus

.[ (¢:+¢2)dQ =0 and ¢(x,y)
2

is constant over £2. By continuity, ¢ =0 over Q. Similarly
¢y =0o0ver,and w =0,

4.4. Discussion
For w € WA and z € Q, Cauchy's theorem gives immedi-
ately that

: j‘wmd;, ZEQ o

w(z)= i;r‘; P
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Letting

Gml§)= ) Ni®)w;
=1

!

where
wp = wizp)
then
lim G,,@) = w(®)
m—®
i—-0
and
w(z)= lim —jw, z €0 (8)
m—e 2nf ¢—z
10 T

(A detailed proof of this convergence is in Appendix B.)
Thus for z €2,

w(z)=cot ez + ) clz—z)lylz~zp), z€Q 9
i=1
where now c¢g and ¢, are also complex constants. [t can
also be argued that the ¢+ ¢,z terms can be eliminated
entirely when using the infinite series expansion.
Because

w(z}= lim ,,(z)
m—+oo
10

over {1, then the boundary values of the limiting CVBEM
approximator (taking in the limit as 8f - { foreach { €T)
equal the boundary values of w € Wi,

Writing the w(z) function with respect to the Gramm-
Schmidt orthonormalised functions {gj} of Section 3 (with
respect to the defined inner-product)

w@)= § (0.g)gE). z€Q (10)
i=1
4.5. Theorem

The set {g;} is compiete.

Proof
Suppose w € W@ and (w, g) = 0 for every j. Then from
(10),

w@ =} (w.g)g=0, z€Q
j=1

Thus w(2) is the zero element of W in that in the limit as

8¢=>¢, ¢=0o0n T, and ¢ =0 on I, where w =¢ + .
Thus the set {g;}is complete.

4.6. Theorem
Let w € WA, Then w satisfies the Dirichlet conditions
for generalised Fourier series.

Proof

By assumption, there are a finite number of line seg-
ments composing I, and T'y. Because w is analytic on T,
then the boundary condition functions B({) on I, and
B'(§)on T, are both piecewise continuous on I
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4.7. Discussion: another lock at W,

By Theorem 4.6, the CVBEM will converge to the
boundary values where continuous, and to the midpoint
value of the discontinuity where discontinuous. Because
Wz} is analytic over O as m ~» oo (Appendix B), then also
Om(z) > w(z) as m oo, But by Definition 2.1, w(8{)~
w(t) in L*(). Due to w(B}) being analytic over £, we
immediately have ,,(z) approximates w(8¢) which, in
turn, approximates w(z) arbitrarily close in L*(T).

5. APPLICATIONS
5.1, Computer program

A FORTRAN computer program was prepared based on
the least-square boundary fit described in the previous
sections. Matrix solution routines are not needed due to the
orthonormal vector technique. The program was prepared
to accommodate analytic function equivalents for sources,
sinks, flux boundary conditions (i.e. tangential detivatives
of the stream function ), and dissimilar regions (up to five
regions with different isotropic conduction or diffusion
parameters).

5.2. Noddal point placement on T

The program initiates by modeling a user-defined nodal
point placement (adequate to represent to geometry of I
as a minimum) to develop a CVBEM approximation. Then,
the user enters (by the CRT) x, y-co-ordinates for the next
nodal location on I' (i.e. adding another basis function) and
the program computes Bessel’s inequality. After several
trials for the nodal location on I', Bessel’s inequality is
computed for each try and is subsequently minimized, and
the optimum choice for the next node on " is made. In this
fashion ,,,(z) > w{(z) as m - == This procedure for locat-
ing a ‘best’ position for the next node to be added on I can
be linearly programmed.

5.3. Flow-field {flow-net) development

By entering x, y-co-ordinates, ¢, ()} values are computed
and the flow-net can be plotted with respect to the approxi-
mation ¢,,(2) and ¥, (z) values. Such flow-nets are included
in the provided applications.

5.4. Approximaie boundary developrent

Hromadka' details the ‘approximate boundary’ I' tech-
nique for CVBEM error evaluation. The contour [" repre-
sents the location where w,,(z) achieves the boundary
conditions of w(z) on I, That is, if the provided boundary
conditions are level curves of w(z) on T, then T represents
the corresponding level curves of ,,(z}. Hence if the
approximate boundary T’ lies ‘sufficiently close’ to T, the
analyst can conclude that an adequate approximation has
been developed. This error evaluation technique is very
useful due to the ease of interpretation. Even beginners can
develop highly accurate CVBEM approximations by simply
observing the relationship of I' to I, and adding nodes to
I' where departures are considered unacceptable. In the
included example problems, approximate boundaries are
developed for each test problem.

5.5. Applications

Example 1. Ideal fluid flow around a cylindrical corner
has the analytic solution of w(z)=z%+ "% Figure 1(a)
depicts the problem geometry and specified boundary
conditions. Figure 1(b) and 1(c) show the error plots in



Complex boundary element solution of flow field problems without matrices: T. V. Hromadka If and C. C. Yen

En
<

al

QM'/\ J\L\A(\,n hc\/\nlm s

20 P ® M Veo%
-005
(1)

-0

Figure 1. Error plots for ideal fluid flow around a
cylindrical corner
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Figure 2. Computed flow net for ideal fluid flow around a
cylindrical corner

Figure 3. Error plot for irregular two-dimensional cross-
section

matching boundary values for bath the known and unknown
boundary conditions. Figure 2 shows the CVBEM computed
flow net. ‘ '
Example 2. Figure 3 shows an irregular two-dlmenswnz?l
cross-section with boundary conditions. The purpose of this

example is to show how the approximate boundary is used
to evaluate computational error for an irregular section
problem, Figure 4 shows a very good match between the
exact and approximate boundaries.

Example 3. A long and shallow unconfined aguifer (see
Fig. 5) is used to compare the results between the dual
formulation technique® and the proposed CVBEM tech-
nique. The mean deviation between the exact and approxi-
mate boundary is about 0.001™ and 02™ for the water
table and impervious boundary, respectively. The 0.2™
deviation is based on the 107* magnitude difference between
the exact and approximate boundary. If this magnitude
increases to 107%, the approximate boundary can be con-
sidered to coincide with the exact boundary. The equi-
potential lines shown on Fig. 6 approximate those shown
on Fig. 8(b) in Frind er al.’s® paper. The stream lines are
not orthogonal to the equipotential lines because of the
different scales in x- and y-directions.

remnm = APPRONIMATE - BOUNDARY

Figure 4. Approximate boundary for lirregular two-
dimensional cross-section

$réw WATER_TABLE

R ——y

B8

>

Figure 5. Boundary conditions for shallow unconfined
aquifer

Figure 6. Computed flow net for shallow unconfined
aquifer
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Figure 7. Computed flow net for soil-water flow through
@ homogeneous soil
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Figure 8. Boundary conditions for hydraulic bifurcation
structure

Lo t

Figure 9. Computed flow net for hydraulic bifurcation
structure

Example 4. Figure 7 shows streamlines and equipotential
lines for soil-water flow through a homogeneous soil. The
locations of the phreatic surface and the seepage face can
be easily determined by the approximate boundary tech-
nique,

quample 5. Figure 8 shows a hydraulic bifurcation struc-
ture with boundary conditions specified at up- and down-
stream ends. First, the stream function is specified for the
horizontal boundary (AB) and ‘no-flux’ boundary condi-
tions are specified for the remaining boundaries. The
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computed results show a constant streamline along the
boundary CDE and linear variation between boundaries AB,
CDE, and FGH. Utilising the above results, constant stream-
line boundary conditions are specified for the problem.
Figure 9 depicts the boundary conditions and the resulting
flow net for the problem. The approximate boundary.is
considered to coincide with the geometry boundary with a
1072 magnitude difference between the approximate and
specified boundary conditions along the boundary.

CONCLUSIONS

The CVBEM can be used to develop approximations of two-
dimensional flow-field problems. In this paper is advanced a
major innovation in the use of boundary integral equation
methods. By use of orthonormalised nodal point expansion
functions generated from the CVBEM, the need for solving
a square matrix system is entirely eliminated. Additionally,
the boundary conditions are met in a minimised mean-
squares fit sense. The resulting CVBEM computer code is
fast, efficient, easy to use, and can be accommodated on
64K home computers which support FORTRAN.

Because the pgeneralised Fourier series approach is
applicable to real-variable expansions, the results developed
for the CVBEM can be applied to real-variable boundary
integral equation methods (BIEM) and boundary element
methods (BEM).
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APPENDIX A

Derivgtion of CVBEM approximation function

Let w € WE, and P, be a nodal partition of . Define a
global trial function G,,(§) on I by

Cm)=Y Ni)w;
=

i

where w; = cw(z;} and { €T Develop the integral function
A(z) defined by

1 (G
A(z)=-—jj———"’(nd§, zEQ
2mi {—z
B G0
,2121“ {—z
]}
OnI},

G (§) = w;l(zj01 — E(2j01 — 27)]
+ Wi [(§ — 2Mzp — 2]
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and

ijGN§=wh{1+(z_q)UM%”wd
T

t—z Zji1—Zy

_ln(zj—z))]— Wy [1 +(Z — Z'M)
2 h I

x (In{zj,y —2) —In(z; — z))]

Summing from j=1 to m, (and noting wy,+; = w, and
2m+1=zl)

m Gu)df m
xX= E _ = Z(wjﬂ_wj)
j=1 {—z i=1
r}.
[(w_] (2 “zj) —wifz — Zje1))
X (In{zj41 — 2) -~ In(z; — 2))]

(zj+1 - 21-)

m
>
j=1

where
In(zp ey —2)=Inz, —z)+ 2ui

Thus

m -1
X= Z [‘-“-’;‘*1 ¢4 “‘Z]-) - wi(z '"zfﬂ)]
i=1

x (n(zjy ~2) — Iz = 2)) iy — 27)
+ w1z — 2p) — @z —21))
X [In(zy—2) + 2mi —1n(z,, — 2 /(21 — 2,,)
Combining terms with respect to the In{z; —z) functions

gives

X

_ i ([wj(z — 2z} — Wy {(z — ;)

i (i —z-0)
_ {w,-u(z —_ Zj) . wj(z — Z;+1)] )ln(z» _ z)
(2j+1 - Zf) !
+ 9 [wilz —zpm) — Wiz —24))
(z,— zm)

Thus if B(§) is the interpolation function on T} given by
Ny wy + Ny (8 w4y, =a¥
0, otherwise

Fi(®) ={
then by substituting z into { of F({)
X= E Py-1(2) —Pi(@)}In(z; —z) + 20iP,,(2)
i=1

where now Po(2) = P, (z). Finally, B(z;) = F;_,(z;) implies
that

. 1 m
A2y =Py} + E/;

[(wfﬂ —wy) (W wj-l)]
(zia—z) (23— zi-y)

x (z;—z)In(z; —z)

Complex constants k; can be used to simplify the writing of
A(z) by

A@)=Pp@ + 3, kilz;— ) In; —2)
j=t

where

2mi

‘. =_1|: (W —wy)  (w;— wj-l)]
! (=2} (z5—2zy)
Noting

In(z; —z)=In(z —z;) + In(~1)=In(z —z;} + in, 4(z)

can be rewritten as

A@) =P, () — i ki(z - z;) In(z — z;)
i=1

m
tim Y kifz;—-z)
=t

in the above, In(z —z;) is measured with respect to point
z €§1 as the branch point. It is desirable to define branch
points at each z; with branch cuts lying exterior of 2. This
process introduces an additional angle term 87 of the branch
cut for each node such that

In(z ~ z;) = Iny(z ~ z;) + i¢/

where In; is notation of individual logarithm functions.
Thus A (zﬁ is of the form

m
A(z) = Rl(z) + 2 Cj(Z = Zj) ln]-(z — z’-)
=1
where R ((z) is a first degree complex polynomial

nt
Ri(Z)=Pn(z)+ ¥ i(m+ 8) ki(z; —2)
i=1

and each ¢; = —k;.
APPENDIX B

Convergence of CVBEM approximator

LetwEWS and z € Q.
Let

A@) = P () + i ki(zj—2)In(z; —z)

=1
where
e [
ol Gra—z) Gz
and
Wy —
Pm(z)=w,+|:—~ﬂ--1 m](z_zl)
217 Zm

Because cw(z) is analytic on £, / can be chosen small
enough such that any three neighboring (in sequence)
nodes z;_y, Z;, 2j4y lie within the radius of convergence of
the Taylor series about z;. That is,
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Wyey = m,-i-w,(z]ﬂ zj)+w] (zj1—2)) a4,
wjy = wy—wi(z;—z; ) + wj(z;—z; 2+ ...
Thus

(@1 = o —27) = wj+ W] (G —2)/2) + ..
(A);+ w}'(zi-—zj_l)ﬁ! +...

(Wi —wplzj—z4)=—
and

i Zir1 ™ g
k - __[w}r(]i-lQ J l)+r]]

2mi

where #; is the residual terms of the Taylor series such that

#;=+0 in order 2 as /+0. Thus

lim A(z)= 11m z}+
lim AG)= tim [ 2,2 ,?;; — o
=0 l—vo

x(z;—z}n(z;—z}+ rzn: -lﬁjrj(zf—-z)ln(ziwz) ]
i=1 2wi

Evaluating terms,

L Wy
lim P,,(z)= hm [w1 (ﬁ_) z— 21):l
m-ves 1™ Zm

I—=0

—(Dl+'_‘_l (Z"‘Zl)
|z

and therefore

) p +_dﬂ' ( )+ 1 jd2

i = —2Zz

Jm A@) =ity et n) Ta
r

1-+eo '

£

x(¢t—2)In(t—z)dz
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" (Zjy zf—l)

Integrating by parts,
2

d*w
Iae €~ -2)dz

r

= (-2)in(—2)
=G=2)n-a

(04 mg—z)a
i id‘( 0 @—2)d

where
=2 G—2) 2] =2ni-0 %]
af Ir df z,
Integrating by parts again the remaining integral term,

dew
—j—(l +In{{—z)df =—[win({§—z)|
r % F

+j’£"_df
¢tz
r
But
—[w n{{—2)] J[. = —2miw,

Thus dividing the necessary terms by 2#i,

(2_21)]

zy

lim A(z) [ L 4o
Z)=f w +—
it TS

[d]

o8 1 wdi‘]
[(21 2 d¢ z, “ 211:',[{'—2
r
1 wdf
5 P
r
Hence,
lim A(z) = wiz)
=0

s



