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3STRACT

The Complex Variazble Bouncary Element Method or CVBEM provides for the exact solution of the two-dimensional

iplace eauation which can be used as an appreximation of & slow-moving, freezing front through wet soils.
iper, a new approach for deveioping LVBEM approximation funciions is presented,
~gximation is developed wnich is tre best approximation in an equivalent vector subspace.
matrix sctutions are eliminated; thus, ronsiderably reducing the computational effert and

rtigns ara used.
requirements.

STRODUCTION

The use of boundary integval equation methods (BIEM)
cor spil-water freezing froent moverent problems has re-
2ived some recen® attention in the litsrature. The
arrent thrust in S1EM medeling is twofeld: use of com-
Jlex variabie beoundary eisments or CVYBEM and use of real
ariable boundary integral equations (e,g., Hromadka and
Jyman, i882).  Soth petheds are similar in that a
aundary integrai is solved by rumerical integraiion ree
ulting in a square, fuliy-populated matrix of an order
iqual to the mumber of nodes tlaceg on the probiem
aundary.

In this paper, the CVBEM 1s reanalyzed with the ob-
ectives of eliminating the need for z sguare matrix
otution, The new method o be oresented is based on
aneraiized Fourier scries theory, and satisfies the
roblem boundary canditions, in a jeast-squares (L2)
onse.  The resulting mode¥ is identical in capabiiity
.3 the previous CYBEM rhase-change rmecdel {Hromadka,
982}, but provides the signiTicant improvements of (1)
satisfying bourndary conditions in & L% norm, and (2}
Yiminates the mairix censration reguivements.

TIDEL DEVELOPMERT

The CYBEM aparoximation function for linear
straigint-line interoolation) sasis Tunctiors results in

1o

se complex funciion (Hromacka, 1283, 1984)

:{z—z.)Ln{z-zﬁ {1)

Ce.e the < are complex corstants ¢, = a, +ib.; z; are
i) o o -
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In this
Using the £2 norm, the CVBEM ap-
Bacause orthogonal

nodal points (j =1,2,++-,m) defined on the problem
boundary I {simpie clesed contour); and Ln (z ~Zj) is
the principai value complex logarithm function with
branch cuts specified to intersect I only at z; (see
Fig. 1). Then &{z) is analytic over QUT - {z;}, and
uniformly continuous over Q UL, Here, @ is a“simply
connected domain enclosed by T. In fact, w(z) is
analytic over the entire ccmplex plane Tess the branch
cuts. The ¢; are calculated in the CVBEM technique by
collocating %o the boundary condition values known at
the nodal peints (Hromadka, 1984).

The ¢y of Eq. (1) are calculated in the L, rorm
sense by finding the best choice of c¢j to minimize the
mean-square error in matching the boundary condition
values continupusly along T'. Notation is used for the
known and unknown function values along T,

wlz) = 85, (5) + 45 (1) |

el (2)

Sz} = a6 (a) + 82,(2) |

where o{z} is the solution to the boundary value pro-
blem over 2UC; &{z) is the CVBEM approximation over
QUC; & is a descriptor function such that & = 1,1 de-
pending whether the associated £, or gy function is the
real or imaginary term; and ¢ is notation for the case
of zcT. Therefore, the objective is to compute the cj
which, for a given nodal distribution en T, minimize

L= 1lgy - g l12 = | (g - B2 ar (3)
T



CRTHOGINAL CVBEM FUNCTIONS AND THIZ BEST APPROXIMATION

The CYOEM anpraximation function of (1) can be
written as

- n
NEVI ST (4)
3=1 ¥
vmm®f1=(z~;‘tn{z~ﬁ).‘meGmdethpm-
cedure tan be us3d tp orthejonalize the Ty such that
N %
*\Z: = -Zj 39; (5}
3=
where Yy are complex constants and
; Pl J=k )
1 |
! - -
195060 = 939, 4 =9
< [0, J#K
in {6), {5:,3y) is notatien for the inner-product.
The bouhdary conditions on ' are given by £, where
e{c) is known continucusiy en ceatour T, and w%c) is

rnown continuously on 7.
only at nodal ooints. The 7.
a finite number of contours.
which minimize

where Ts + Iy 2 T and Ty [ 1T,
and T,, ¢an be compgsed &
Then the vy are computed

_.;‘4:g‘f + { (q(:) -im E‘\{ng)zdf' (?n"
i -
- *'.b'

.
(a(z) -Re 4.

ro_
P

s

cause the are orthogenal, the vj are directly com-

Ee
outed by

{8)

Then the best approximation (in the L, nomm) is given
by

- 3
YJ- = (gk:gj}/(g\]“lgj!

(9]

3(z) =

Il.[’fla

i
SOPEIOIVACTNERY

J=1

The c; are then computed by back-substitution of
the vso; fiactions inte the ¢ functions. It is noted
that By’ this approach, the c.”are computed directly
without the use of a matrix ¥Yystem generation or matrix
solution. This is important dug to boundary integral
methods resuiting in the solution of fully populated,
square matrix systems.

ORTHDEONAL, VECTOR SYSTEMS AND THE BEST APPROXIMATION
5

Let F: be Jinearly independent vectors of dimension
n, for j =71,2,-+-n. Then the Cram-Schmidt procedure
can be usa2d to construct orthogonal vectors Gj of dimen-
sion n scch that the dot product gives
Pl d sk
G, - G =« {10}
Tt o, srk
.
tet 3 be a voctor of dimension n.  Then the best ap-

proximatizn of % in the subspace spanned by the Gj is
giver by the vector A where

{11)
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where

ny = (g - Gj)/(Gj - Gl)

j (12)
The corresponding approximation to B with respect to the
ariginal Fj vectors is

m
A= o 3
jgl ‘i3 (1%)

where the C; are computed by back-substitution of nJGj
inte the regpective Fj components.

REPRESENTATION OF THE CVBEM APPROXIMATION FUNCTION BY
A OIMENSION mn VECTOR SPACE

Let T be discretized into m boundary element T,
j=1,2,+-,m. On each element, define n interior eeal-
uation points (usually evenly spaced), resulting in a
total of mn points t{ on r. For each function f; (see
Eg. (4)), develop the vector Fj of dimension mn gy

= o= ' 1
F. {fj(ti)’ = 1,2,00,m}

j {14)
In (14}, the coordinates of t; are consistent for each
vector Fi, § = 1,2,++-,m, such that points (t ,t, ,-«-,t)
occur in“boundary element ', The resulting @ec%ors Fj
form the basis of a subspacé Fp, where each vector

Fe Fpn 1s given by

m
- £
f -Zl "33 (15}

Similarly the boundary condition values defined on

I' ¢can be represented by the vecter B where

B = {Ek{ti); = 1,2,000,mn} (16)

The best approximation of the vector B {in the %, noerm
analogy of the L, norm) by a vector Aec Fy, is gifen

directly by (11)7and (12}, The corresponding estimate
of the best approximation w(z) is given by

n
iy 3%

w{z) (17}

Thus in the above, the best approximation for u{z) is
estimated by using the best approximation from a vector
space spanned by the vectors G;. Appendix A presents
more details and theory of thik CVREM technique, in-
cluding the proofs of several of the above statements.

IMPLEMENTATION

A FORTRAN computer program was prepared which devel-
cped the best approximation fn a vector space (of dimen-
sion mn) in order to estimate the ¢, coefficients of
Eq. (1). The basic steps used in e program are as
follows:

1. Data entry of nodal point (m} cocrdinates and
houndary values

2. Number of evaluation points entered (n)

3, Develop dimensicn mn vectors Fs:, j=1,2,-+,m

4. Develop dimension mn vector B b boundary
values

5. Develop orthogonal vectors Gi, J =1,2,+«0,m

6. Compute vector coefficients n

7. Back substitute G; vectors into Fj and campute
the coefficients Cj; 3 =1,§,...,m



.o is rnoted

= nus the aboye Dro-
gram stps invaive wo vectlrs fo

T
eacn Cs,

That is
from (1),
wiz) = ,J:(; -z, in (z-2.7]
i=1 Y
{18)
m
+ 7 oiJilz-z.) bn{z-2.00

jil J[ J ( J’

Hence the f: vecicrs corresponding to the €: have two

separate co%oonents which are used, raszectively, with
the o and 3. Consequentiy, for m nodes there are 2m
coefficients to be cemputed.

COMPUTATICNAL EFFICIZRCY

The use of the nexw CVBEM technique appears to re-
duce computaticnal effort by approximately Z0-percent in
comparison to tre referenced TVETY medel of Hromadka
{1982}, Current work 1$ ongaing o evaluate the per-
formance of this new technioue in development of approxi-
mative boundaries ‘Hromadka, 1984} and incorporation
into general purpose frost neave modzls.

CONCLUSZONS

In this paper, a new aporcach for developing CVBEM
approximaticn functions is presented, Using the &
norm, the CVBEM approximatior is ceveloped which is the
best aporoximation in an esquivalent vacfor subspace.
Sacause o<thagenal functions are used, matrix solutions
are eliminated; considerzdly reducing the computationzl

Tort ang memory recuirements.  Curvent rasearch is
Joing to inciude additional model features such as
frost heave, end soil conscligatien.
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Fig, 1 Nodal franch-Cut Placemsnt for the CYBEM
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APPENDIX A
Notation
For w swﬁ, the following notatjon is used:
G: convex, simply connected domain
r: simple closed contour forming the boundary {t
L,2: ;eT,zaQ;c=RJefor0ﬁ<h
b = Re w
wos Imw

fof = {92 + p2)°

du = |dz)
ol lp = ] u(c)Pan"°
{zj}: ngdai points defined on T
Tj: boundary element {line segment) connecting
Zis Zjyy

B: B = Urj; fg = domain enclosed by B

F¢’r¢: Ty Urw = T and F¢{'\Fw at two points of T
(wow) = [ o%du + [ ¥y

F¢ T¢
Nl * (ww)?

L = length of T

wir} = 1im wisg), 0s8<1.
&+1
z_ = centroid of @ oriented such that z, = 0+ 0i

Simitarly, wiz} = #{gi+ivls)

§ = a coordinate reduction factor, Ogd<l

T, = {60, TeT)

8

Q. = 152, z e
f=qaur

4, = 0, Ur

2 = minigum boundary element length

DEFINITION OF H?

—_—

Let © be a simply connected convex domain enclosed
by the simpTe-closed contour ', where the centreid z, of
D =qUr is located at zg = 0 + Qi. Then Wy is the Set
of complex valued functions which are analytic over f2
and satisfy

(1) \m(c)é e LF (1)

(2) Tim w{sr) = w(c} ae

§-+1

DEFIRITION OF wn’"

wgf is the set of ail w Ewp such that o is analytic
over T, '



o,

fnecren in L2(r), and w(sz) w(z) in LT},

ltﬁ g; W Theorem
Proot Let weW,. Then for zeq,
et wew. Then 4 2. 1 wl{g}dg
e ) & 0.}{2) = —
DEFINITION OF .- oi -2
r
Let the 3our1dary T of © be piecewise l1inear. Then Proaf

W~ 15 noted as W~ .
v v Let FS = {8, ¢ el and 0<8<1},

Thearem
- Then w i$ analytic over I', and the domain enclosed by
Let w sz_ Then o ulz) in L2(T). s noted as Q. Choose [y such that z eqg. Then
Proof 1 [w(c)dz; 1 (w(és)d{ac)
w(z) = —— ] —
Consider just :(z) of wiz) = »(z) + ip(z) and sup- 2w £ -z 2mi 6 - 2
pose ¢{z)> C for discussion purposes., Define sets Ey 8
and RH by Congider
= loel: 2lsW) ) } 1 Talo)e 1 [ w(dc)sds [ wlghde
) X={ ulz) - — -
RN =T - E“ l 2n &g -2 L-z
Pefine functions ) and 2 ( th elements of W ' : '
e f ¢ lz) and 2, (z) both elements of Wy
such that the bOJﬂAJYj vaiuet on T are given by two - 1 { (sclwlee) - wle)] - zldu(se) ~wlz)Id 4
Dirichlet problems - J |
2'n {sg-2) {5 -2)
I T
i ?(C)a :EEN
S = { Letting d = min|z ~z| for £ T, then as §+1
I Mo, oI ERN
) ) 1 1
( G, zefy Hm X —| |w(sg) ~wlg)|du= — [falst) ~w(z)|],
ey = oy 2md 2nd
A r
L alod-f, o e Ry

But ( g} +lwl{z)}] in L* implies L} convergence, and

Then ¢y(2) * ay{c) on T and s (z) + ey(z) = 3(z) over 2. 1M X0
I* is noted that »{c) rL (r) 1mpltes e
Thus
ro _ £ ! ) 1 wlg)dy
b [ feladlian = | 3 Te: | [o(2)1Pduz WnRy oz} = — . zeq
< T jod 2mi L-Z
) N
and thus Thegren o
mRN < A/N? tet {f.} = {1,z2,{z-z ) Ln(z-2),-»e, (2~
i z-23),+] where sf angd’ the {2} are separgte
Als0 a5 Noe, mRy~0 and noﬁa] points of T. Theh {f;} are Tinedrly independent
- functions on T. o
( [9{2)]%¢n~0 as N :
J Proof
Ry
Suppose the first (n+2) of the functions are
Because on(Sg) is dominated by the constant N for all linearly independent. That is,
C<F<l the Le bescue Oominated Convergence Theorem
polies and on(8z) ~on(Sz) in 7T}, for all N ~ .
e aylszy ~oplsn) {T) Cov1 *Cao z+JElC (2 -2;) Lnylz-25)
let R_ = lim R_ = ) Ry
Pwea K=l and the next function (z -z;) z - zg) s not linearly
, ‘ v . independent. Then for some comp%ex constant Cy,
tet mnm = G, let zoeR,. Then because ¢{z} is harmonic
over 0 it cannct have a maximum {or minimym} in @ uniess L - ;
o(z) is constant over f.  Thus sup[¢(z)] must occur for Clz-z.) Inlz-2} = w(z) forall zer.
ze;;uatta,LsR 'hen¢(go)<hﬁo)forah

e, and ‘{0' is d0m1nated by zlzg) over R, Taking the second derivative with respect to z gives
nerefore, 3 ?-s—"[” in L A .m}?ar}_y, W 6‘;) "“U(

240




(z—zkf J 1

Rearranofng terms. iinear depencence for nede z, sets

3

n
(z-z_)=fz-2) ;7 2. % (z-z:)
i=1 & ©iEl Y ome ‘

w7

Hence, as z+z, a coﬁhradwc ion arises for every nm.
Thus, the ’f are jinearly independent on I by induc-
tion (the casg of n =1 1s trivial),

Notaticn

The symbol ifa)] is notation for

for wew,
2

is notation for

The symbol §iwlip for welly

I r -
Hullp =

Ol
Hally =4 b S
+ o

wocause sets of Lebesque measure zero have no effect on

integration, aimost-everywhere {ae; equality cn T indi-

cates the same class of element. Thus for weWg,

{w] = {w e Wy: w{z) are equal ae for - el}. For example,

(0] = ‘weWs: wig) =0 ae, r=rt. When understood, tha
notation "[]" will be drerped when there is no
confusian,

Theorem ([]wi] = 0 implies w = [C] cW,

Given wzWn. Llet w = + ip where ¢ = 0 ae on T
and ¢ = 0 ae on'T,. Then j:iw|| = 0, and w = (0] eW,.

P

Proof

Let f(z) = u + iv be a conformal mapping of Q onte
G where Ty iz split inte two equal parts ¢, and C,, and
g, = Ty and G is the region O<u<l, v>0 s0 that: the
image of C, is the ray wmy= 0, v>2; the image of C, is
the ray of u = 1, v»0; and thﬂ image of C, is Lhe seg-
rent O<u<i of the y-axis {the Riemann Mapping Theorem
guarantees the existence of f{z))}.

The boundary condition of © = 0 on € i35 equivalent
of ag/an = Q on C, Tneruforc in G the problem is to
find o*{u,v) such “that e*{0,v) = 0 for v»0 and +*(1,v)=0
for v>0, and do/an* = 23(u,0) = 0. The solution is

9*{u,v) = 0. Trhus, o{x,y; = 9. By continuity of o(x,y)
over Q,u(x,y) = 0. Thus, |jwi| =0 implies & = [0] e¥g.
Theorem (relaticnship of tiwll to jiwfl,)
let weklo. Then [helll = Tap)?® « Tw]]®
of

Let w =~ + i,
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Then |lul |2 = [ Ju(z)|?dy
r
= { (9% + w?)du
4
r
- 3 2 [ 2 [
= | ¢%du + | ¢2du + J v pady + ) Y2dy
s Ty Ty Ty
= lo]]? j )2 du+j¢2du
W

[l |? + |I1wH
Theorem

let wek,. Then |[w]l = 0= ||WI|2 = 9.

Proof

|Jw|| = 0 implies w = [0]. And iw = [0].

Thus, flw|], = /fo[[Z+ T[ief][*=0.
Theorem

Let weW,. Then [fu[[ =0 1fF [{u|[, =0
Proof

Follows by previous theorems.
Theorem

let weko. Then [ful| < [|uil,
Proof
Let w = ¢ + iy.

Then

ol |2 = jf ()] 2du hzdu . Jf 24y
T T T

Hall* + o] ]?

Hel 13-

Because ||iw{}® 2z 0, then |ju||® s

Theorem (inner-praduct on WQ)

Let (o,B) be defined for {a,B) ¢ W, by
Rea Repduy + J Ima Imgd v

Ty

(0.8 = |
]"J
¢

Then (a,R) is an inner-product on WQ.

Proof

{i} (a,a) = J {(Rea)?dyp + f {Img)}?dpz C

F¢ T

(i1) (a,x} = 0 implies a = [0] ¢ Wos
{¢,a) = ¢ implies Rex = 0 ae on Lo

<

and Ima = 0 ae on Ty

Thus, o [0] & Wey.



{119} {ka,B} = f Reka Repdu + J Imka Imddu = k{u,3)
F¢ Tw
(v (e,8) = (Baa)
{v) (erd,y) = {a,v} + (B,7)
Theorem

WQ is an inner-product space.
Theorem

I
The function ||w|| = {w,w}® 15 & norm for o ENQ.

Theorem (&m can approximate an analytic function on w;)
Let T be the union of a finite number of straight
1ine segments such that I is a simple closed contour
forming the boundary of the simply connected domain f.
Let w be analytic over QUT. Then for any £ > Q there
exists a CVBEM approximator wm such that ||w - wm|| <e,

Proof

on F such that a node is
T, and the 1ength of each

Define m nodal points {z3)
iocated at each angie point o

fr

boundary element £ satisfies max {£; } 2 min {g:}

Using a 11near g]oga1 trial function™Gy def1n%
em(c? = w(g) {¢} for ¢ el. A]so def1ne

max jwig) - G ;T Then {e/ (g)f < oo+ ReE &
ImGp{c) | <3 where Moo= maxjw (c)J For M, = max]w”(g)L
For'M, = max’ |w"(z N ||e il s M,0% where 2= min {1},

for point z, boundary element Ty with zg # z¢"nor
Ip41 (the end point nodes of Te).
Define X by

- P [ [wlc) - 6 {g)]ds
T ol bzl = = | =
Q
I

where P is notation for the fauchy Principal Value of
the integral, or limit as z -z, sectorally for z £0,
Because w(2z) is analytic at Z,. there exists a domain
Plzg) such that D(zy) = {z: |z-2z4] <R, R>0} and w(z)
is analytic in D(z ? and can be expanded as a Taylor

serigs. Choose m suff1c1ent1y large such that
M Coo{zg). Then
o Jey(adtan P e(cide
s — |~ — ||
2n [z =2, 27 £~z
T—Fk Fk
. 3L|;em1\_+_P ‘I[em(c)-em(zo)]d;
= |
2l 2n % L=z,
k
N Lem(zo)!P [ ag !
2n J -z |
'y
But
legle)l ~ep(zy)|s|Refe (c)-e (z)]|+|Inle (c)-e (z )]]

2len(e)] e -zl +2ie ()]s -2,

in

A

12M fg -z |
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That is, e,{7) catisTies & Lizsnitz coagiticn on Ty

wWith an expongnt of 1. Also
Pt{ dCi P ;I‘__:! T 2, |
J— 2':____\|n L& 055—"'!_,._._1.~\<1
§ -z 0ot z, - . (it
ZTI;; [ ZO‘ 2! ” ZQ-‘ 2 =
k
Thus
3L
Yg — e
27}'2
L
<— e
L
But fle || = M 2%, Then = () = & ?%4
and lim 0= 0,
oo
-0

+
9

Choose m sufficiently large such that the above develop-

ment s valid and also jw{g) - J {z}: < o/vT where
e > 0. Then "
~r T 1
~ _i , -~ 7 3 ] . 2 | -
| w —wid, =i e _Hmizd*: R '{n /L dy ¢ =E
4 - L ; J
and for any ¢ > O, There exists a :m such that
ey - o RS
R T NI bmidy, ¥ £-
(A similar argument holds for z, E{Zi}')
Theorem
Let wzdy,  Let {zJ? be & CVBEM neda) partition of
I'. Define as the union”of the boundary elements,
m
8= T
Jj=1
Then g aur
Proof
Because T UT is convex, esach CVY8EM boundary element

is a straight Tine szgment connecting to points in QUT,
and hence is contained in 2 UT.

Thegrem

tet w EH?. Appraximate T by m nodes {z:)] to
develop B. [or every = >0 there is a B such”that for
el and :8 £8, where ¢ = c{o} and gz = zg{a), 0g6<2n
and |jwlz(g)] - wlgglsd i < 2,
Proof

and also B.
AS M, BT

u;gwp implias = s anelytic over 2 UT
Hence w 1% unr Tornnly continuous aver @ UT

and max|z(z) - 13(5)2 ~ . Choose m such “that
max]w[z{5)] - “LEB( 13 <2/ vIDL Then
. f: 5= - cvarz gl 1k
gl b =g, s [}'ju[;(ﬁu-m;a(u)ﬂ“dﬂ2
- i
< 1_L<Lh/L)d%J e



Thegren Proof

Let wekW~ Then for avery ¢ >3 there exists a

WBEM acproximieticn I and associated bHoundary B such For the assumed T = B, bp el
o

that Thecrem
JHE RN T
Let weky (where T is a piecewise linear contour).
where ¢ =T and I B, Then the set of functions [fj} forms a basis for W
Proof Proof
| Aoproximate wl(c) by wl(sg) ' Approximate w(zg) by w(8g) for some D<g<l. Approxi-
Huwtz) - wl ! . i mate w(8c) £Wy by a CVBEM (o). Then
gyer DUT

e(z) -i:)m(c)Hﬂ Iw(?-',} -w(éz))] +Hm(5£) ‘am(E}H

Engineering Problems

IE practical engineering problems, we are involved
with Ws spaces. Additionally, the boundary valiues of
weWg are piecewise continucus in the first derivative,
and continucus with respect to both the potential and
stream functions over TI. L

From previous work, the {f.} forms a basis for Wey -
(o) - Slsy = ) - o)) Thus the defired norm ||w|]| for'w swh provides an im-
(R tmitp i o | mediate best approximation using 2 generalized Fourier
series expansion of w using {fj}.

Theorem
Let weW~ where © = 3 for scme finite number of

nodes. (That'is, T is a union of a finite number of
Tine segments.) Then
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