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SUMMARY

The Complex~Variable Boundary-Element Method (CVBEM) has emerged as
a powerful, accurate and effective numerical technique for simulating
two-dimensional potential flows. Its applicability to basic flow
problems has been demonstrated in the recent literature; however, the
CVBEM model can also be extended to a host of more complex two-dimen-
sional problems in either the horizontal or vertical plane, for both
surface water and ground water hydrology. Two examples are presented to
illustrate the adaptability and applicability of the CVBEM to complex
flow situations; these are flow over a spillway and advective-contam-
inant transport in ground water. These problems encompass either an
iterative solution procedure Wor the superposition of a number of flow
components.

1. Introduction

In computational fluid mechanics and hydraulics, numerical methods are
constantly under development and refinement for the effective modeling
of various fluid-flow problems. These methods can be classified into
two categories according to the mode of numerical discretization--the
domain approach and the boundary approach. Although the former approach
is the dominant one at present, the latter has begun to attract the
attention of modeling hydraulic engineers. Boundary techniques employ
discretized boundary elements instead of discretized domain elements, as
in domain methods, such as finite difference and finite element
formulations. For physical processes to which the potential theory can
be applied, the domain integration may be reduced to boundary integra-
tien through the theorems of Green, Stokes, Gauss or Cauchy. This
results in considerable simplification of the modeling procedure.

The majority of boundary element formulations (e.g., 1,10) have
dealt with a real-variable integration along the boundary of a real
domain. The Complex Variable Boundary Element Methed (CVBEM) on the
other hand, handles the complex-variable integration along the boundary
of a complex domain. The method is based on a function referred to as
the Hp-Approximative Function, which is derived from the Cauchy integral
formula, and is formulated for computer solution of the Laplace egquation
with appropriate boundary conditions. If the given flow is two-dimen-
sional (2-D), transforming an areal integration to a one-dimensional
(1-D) integration by the CVBEM is simpler and more efficient than a
real-variable scheme based on Green's theorem. Furthermore, both
harmonic functiomns, potential (¢) and stream (V) functions, are
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simultaneously available in the CVBEM model output. This also means
that normal derivatives of the solution variables, which are required in
the real-variable integration, are not needed. '

In this study, two relatively complex flow problems are selected
for simulation involving the use of the CVBEM. The first problem is a
flow over a low spillway of a given crest and bucket profile, thus
representing an open-channel flow which is 2-D in the vertical sense.
This problem involves determination of an unknown free surface, for
which numerical iteration is needed. The second problem treats advec-
tive contaminant transpert in porous media resulting from recharging and
punping through wells, thus presenting an example of ground-water flow
which is 2-D in the horizontal direction. This type of problem involves
solutions of the Poisson equation, the analytic functions of sink and
source, and boundary conditions which create a background flow.

2. A Review of Complex-Variable Boundary-Element Method (CVBEM)

The development of the CVBEM has been presented in several articles
(2,3,5,6,7). A very brief review of the method is given here, which
leads to the formulation of a computer algorithm that can be extended to
simulate relatively complex 2-D flows in hydraulics.

In a complex region &, enclosed by a boundary ', the Cauchy intepral
formula,

I wlg) dg
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r

relates a single-valued function & at any interior point z to the
integration of the function on the closed boundary. For computer
solution, the continuum boundary of Eg. 1 can be discretized into a
number of straight-line segments Tj, called "boundary element," (see
Fig. 1). The exact function ® can be replaced by a continuous global
trial function Gy(z), resulting in the approximative function &(z),
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in which, G, is a complex polynomial of degree n, and m is the number of
boundary elements. G, is defined on each houndary element, and joined
together at each (vertex) node to form a continuous global function. If
n=l, Gy represents a linearly-varying (within each element) trial
function, which will be the case considered throughout this study.

The function %(z) defined by Egq. 2, integrated in the usual
positive sense, is referred to as the H, Approximative Function. If
iz3, j = 1,2,...m} represent a set of nodal points on T', three types of
noéal function values can be defined at these nodal points:~-namely,
exact {(or continuum) nodal values, w (zj); approximative function (or
discrete~-form) nodal values, ¥(z4); and specified nodal values, E(Zj}.
The nedal value of each type consists of the real part ¢ and the
imaginary part ¢, which may also be identified with the corresponding
type-notation, e.g. &(Zj) = $(zj) + i$(2j).
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Fig. 1. CVBEM Boundary Discretization

In many engineering boundary problems, only one of the two "speci-
fied" nodal values § and ¥ is actually given or known at each node,
and the issue becomes that of finding the other. [An expanded defini~
tion for ®; = §y + idjwill be used here; that is, if at least one of the
conjugate function values, ¢; or ¢j, is known, all three symbols w, ¢,
$ will be capped with the overbar; thus, Ej = §; + if;, even one of $5
and wj is unknown.] One commonly used approach is to let the interior
point z in Eq. 2 approach each boundary node z; in turn, and thus
generating a system of m complex-variable equagions, each having the
form

;(zj) - $(zj) + iw(;j)

L s do
Tl kzl fla¢(¢k, ¢k+1'}C)+ iosw(ll?k ¢k+1’§)J C - zj (3)
. .
k

in which @y and ey are both functions of real variables. {It can be
proven that Cauchy principal values exist.]

Equating the real and imaginary parts on both sides of Eq. 3 (after
integration), results in 2m equations. Because one half of the nodal
variables ($j~ $3) are known, the remaining unknowns (m in number) can
be found by using only one half of the 2m equations.

3. Formulation of CVBEM Algorithm for Flow Modeling

By denoting the known part of &(z) as Ej, %(2) or $(z): and the
unknown part as £,, §(z) or ${z), and by using the symbol A to indicate
1 for ¢(z) and i for ¥(z), &(z;) may be expressed as G{z;) = Afy (z3) +
Afh(zj). Furthermore, in Eq. %, the part in & correspon&ing to Ey,that
is, $ or §, will be denoted as fk » and the other part, which corres-
ponds to fﬁ, as §u. Then the corresponding expression should be
ﬁ(Zj) = Agk + Afu. With the foregoing notation, the Zm equations
formulated in the preceding section may be grouped inte two sets of m equa-
tions as follows (6).
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Case I IEk] = C [t k] t <, [Eu] (4)

Case 11 [E,) = G4 [E ] + ¢, (E) (5)

in which Cy, €y, C3 and C4 are each m x m matrices composed of real
numbers.

The m unknowns, %,,, can then be solved either from the first
system, Case I, by letting £} = Ty (i.e. collocating the knowns
explicitly), or from the second system, Case II, by letting Eu = T,
(i.e. collocating the unknowns implicitly).

In this study, the Case II approach has been used. After all
T's are found, the values of E(zj) = E(Zj) + i$(Zj), 3=1,2,...m,
are used to compute the H] approximative function, @&(z:), from which
error estimates are made. The process is then repeateé for numerical
improvement,

4. Flow Over a Low Spillway

-

Two-dimensional ideal~fluid flow (incompressible and inviscid) can
usually be represented by complex potential and thus satisfies Laplace
equations,

v2e = 0, vy =0 (6)

Therefore, if appropriate boundary conditions are given, that is, if
enough Ey's can be specified along the boundary, the remaining E,'s
can be computed (by Case I or II) and the flow problem may be solved.

Flow problems become complicated and difficult to solve if the
boundary geometry is not defined. Flows with a free surface are typical
examples of the class of problems in which determination of the boundary
becomes a part of the problem solution. A steady ideal-fluid flow over
a low spillway is selected here to illustrate the feasibility of
extending the basic CVBEM solution to complex flow problems for which a
close-form solution does not exist. A similar type of problem, aside
from the classical flow-net approach (11), has been addressed by various
computational methods in recent years;--e.g. the Finite Difference
Method (FDM) by Southwell and Vaisey (12), the Finite Element Method
(FEM) by Ikegawa and Washizu (8) and the real-variable Boundary Element
Method (BEM) by Liggett (9).

A steady 1deal-fluid flow over a low spillway with the crest and
bucket profile as depicted in Fig. 2 is considered. The problem is to
determine the free-surface profile together with the families of
equi~potential and stream lines, i.e. a flow net, which satisfy assumed
free-surface conditionagl

The solution to this type of problem entails some form of itera-
tion. An approximate free-surface is first assumed and two vertical
lines are taken sufficiently far upstream and downstream where a uniform
flow is assured. Using this flow domain, bounded by surface and bottom
profiles and two end-verticals, the CVBEM is applied and ¢'s are

2/The problem is derived from one of the flow-net-problem assignment
"%iveg to the students of Intermediate Mechanics gf Fluidg 59%103nb§’
r, Huntgr Rouse at the IImiversity of L . . The ph A -
gglugéggzsinrégergexg,tga%n %o%ﬁgg%g% %gyat%on ?ﬁgufﬁgeoftggfgéggg?et‘
aPRIR% net’in the aforementione course, T TLer when hie constructed such
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evaluated along the closed boundary. The velocity head at each surface
nodal point is computed from the corresponding spacings of ¢-values
along the surface. The total head is evaluated from the Bernoulli
equation at the surface nodes and compared with the prescribed total
head. Adjustments of the surface are then made to reduce the discre-
pancy between the prescribed and computed total heads at each node to a
tolerable level. '

Numerical instability has been experienced {also reported by
Liggett, 9) in carrying out iteration procedures for achieving a
satisfactory water-surface profile. After various trials, the follow-
ing procedures have been found most satisfactory: ({(a) find the discre-
pancy, £, between the given and the computed total head at each node;
{b) set a base surface-correction value €1 to €1 = 0.2 € (or 0.25 ¢);
(c) multiply ey by a factor f = As/As, to obtain the correction value
€2, i.e. ¢9 = fey, in which As and As, are ¢-spacings at the local and
at the infinite upstream points, respectively; (d) modify the sign of
€7 (i.e. the direction in which the surface node of interest should be
moved) according to the specific energy curve (e.g., referred to as the
E-y curve in Henderson, 4).

It was impossible to eliminate the numerical oscillation completely
even with the above procedure. Some points with the largest discre-
pancies are shown in Fig. 2, together with the surface profile obtained
from the flow-net solution. These points all occurred near the critical
velocity point {near the spillway crest}. The deviation of these nodal
points also affected the location and spacing of flow-net lines near
these points. Discrepancies at other nodal points are too small to
plot in the figure.

Those who previously performed numerical cazlculation of flow over a
spillway reported a zone of poor agreement in their numerical results.
For example, Liggett (9) indicated that in the zone immediately upstream
from the spillway the computed points did not agree well with the
experimental profile, A similar difficulty has been experienced with the
CVBEM solution, except in this case the zone of difficulty occurred over
the spillway crest where the flow is cuitical. In addition, the surface
prafile that was compared with the CVBEM solution was from the classical
flow-net solution 2/ instead of an experimental profile.

Because the CVBEM deals directly with the complex potential, both ¢
and ¢ values are directly avallable in the model output] a clear
advantage for flow-net construction. Other valuable flow information
can, in turn, be provided from the flow net. Algorithm based on the
CVBEM are generally regarded as more efficient than those based on a
Green's function or real-variable formulation (3).

5. Advective Contaminant Transport

Using superposition principles the basic CVBEM model can be
expanded for or be adapted to modeling compound 2-D ground-water flow
and transport problems. In other words, by joint use of the CVBEM,
analytic functions, and the Poisson equation, different forms of flow
such as background flows, sources and sinks, precipitation or seepage,
and other flows introduced by the boundary conditions, can he combined
together for studles of contaminant transport in ground water.
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Fxpressing the above in an equation form, a potential function

-

~ 1]
F(z) = w(z) + 3 —= In (z-z)) + 0, (2), zeQur (7)
k=1 -

has been developed which satisfies the Laplace equation in domain {. (&)
Here, Q is the discharge from well k (of n) located at zj [i.e. a sink
{-); (+) for a source}, ¢, is a particular solution for the given
Poisson equation, and ﬁ(zg is a CVBEM approximator representing the
background flow field. The boundary conditions needed to develop &(z)
can be obtained by subtracting the effects of the source-sink and the
particular solution terms (the 2nd and the 3rd term on the right-hand
side of Eq. 7) at the boundary from the actual boundary conditions.

Some applications of the aforementioned expanded CVBEM model to
ground-water advective contaminant transport are illustrated below. Diff-
usion~dispersion effects are not considered and the hydraulic conductiv-
ity is assumed constant. Each application has the same nodal point
placement as shown in Fig. 3.

(a) Figure 3 shows three completely penetrating ground-water
wells, each with discharge 50 m3/hr, located at the coordinates
(500,500), (300, -300), and (-500, -500), respectively, in a homogeneous
isotropic agquifer of thickness 10 m. Contaminated water is being re-
charged at an _injection well located at the coordinates (-300, 300) with
a rate of 50m3/hr. Negligible background ground-water flow 1s assumed.
Figure 3 depicts the contaminant front at 0.5, 2, and 4 years. It takes
4.32 years for the contaminated water to reach the middle well
(300,-300), and about 5.58 years to the other two discharge wells.

(b) An injection well and a discharge well are located at (-300,0)
and (300,0), respectively. A differential potential of 2 m is assumed
across the western and eastern boundaries, which contributes west-to-
east background flow. The potential along the northern and southern
boundaries is linearly distributed. Figure 4 portrays the contaminant
front at 0.5,°1, 1.5, and 1.98 years. The contaminated water takes
about 2 years to reach the discharge well.

(c) Consider a steady flow pattern produced by a single pumping
well operating at 50 m3/hr at (0,0), near a landfill with an equi-poten-
tial boundary ¢ = 2m along x = -1000. From the cowputed results, it
takes 8.96 years for the contaminated water to reach the production
well. Two additional wells have subsequently been installed at (-500,
250) and (-500, -250) with strength equal to 10 m3/hr to retard the con-
taminant front. Figures 5 and 6 describe the front movement and flow
(streamline) pattern for these two case studies. The unsymmetrical flow
pattern revealed in Fig. 6 is probably due to the relatively coarse nodal-
and time-intervals used,

An interesting and useful feature in development of the CVBEM model
demonstrated in this problem is its simplicity and flexibility for
modular expansion. To the basic CVBEM model, an arbitrary number of
sinks or/and sources may be added, or a Poisson equation may be
attached. It is also feasible to combine two or more CVBEM solutions--
such as a large nonhomogeneous region subdived into a few homogeneous
subregions, each with an appropriate CVBEM solution,--by a proper
treatment of interface boundary conditiouns.
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Although the Polsson equation was not used for those cases con-
sidered above, it can be easily programmed into the model if an appro-
priate condition and data are given and a suitable particular solution
can be found (see Eq. 7).

7. Conclusions

The basic CVBEM (complex-variable boundary element method) model
can be extended to simulate relatively complex two~dimensional potential
flows in surface and ground water. "Two-dimensional® can be either in
horizontal or vertical sense, and "complex flows" may include coupled
flows requiring coupled, interactive, or feedback solution, and compound
flows which consist of a number of different types of flows but can be
salved by superposition. They may involve varied forms of application,
such as determination of free surface profile or study of contaminant
arrival time. Two illustrative examples given in this paper, jointly
include all features mentioned above and serve to exhibit the
capability, adaptability, and useful features of the CVBEM.
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