Best approximation of two-dimensional potential
problems using the CYVBEM
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The Complex Variable Boundary Element Method or CVBEM provides for the exact solution of the
two-dimensional Laplace equation. In this paper, a new approach for developing CVBEM approxima-
tion functions is presented. Using the I; norm, the CVBEM approximation is developed which is the
best approximation in an equivalent vector subspace. Because orthogonal functions are used, matrix
solutions are eliminated; thus, considerably reducing the computational effort and memory

requirements,
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INTRODUCTION

The CVBEM approximation function for linear (straight-
line interpolation) basis functions results in the complex
function (Hromadka, 1983, 1984)

m

&lz) = 1>=:1 ci(z —z) In(z ~ z) n

where the ¢; are complex constants ¢; = a;+iby, z; are
nodal points (f=1,2,...,m) defined on the problem
boundary T (simple closed contour); and In(z —z;) is the
principal value complex logarithm function with branch
cuts specified to intersect I only at z;. Then ¢(z) is analytic
over  UT — {z;}, and uniformly continuous over Q UT.
Here, §2 is a simply connected domain enclosed by I'. In
fact, ¢3(z) is analytic over the entire complex plane less the
branch cuts. The ¢; are calculated in the CVBEM technique
by coHocating to the boundary condition values known at
the nodal points.' .

In this paper, the ¢; are calculated in the L; norm sense
by finding the best choice of ¢; to minimize the mean-
square error in matching the boundary condition values
continuously along T, Notation is used for the known and
unknown function values along I',

w(f) = A5 () + AEu(i’)}
R R ter
() = Ak(5) + AL, ()

where (z) is the solution to the boundary value problem
over U C; &(z) is the CVBEM approximation over U C;
A is a descriptor function such that A=1,i depending
whether the associated §, or . function is the real or
imaginary term; and { is notation for the case of z&T,
Then in this paper the objective is to compute the ¢; which,
for a given nodal distribution on I', minimize
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ORTHOGONAL CVBEM FUNCTIONS AND THE BEST
APPROXIMATION

The CVBEM approximation function of (1) can be written
as

w(z)= fri fj (4)

where fj=(z—z;)In(z —z;). The Gram-Schmidt procedure
can be used to orthogonalize the f; such that

m
(@)=Y v (5)
f=1
where v, are complex constants and
1, j=k

cgf,gk)=fgfgkdr={0 o ©)
r

In (6), (g;,8,) is notation for the inner-product.
The boundary conditions on I' are given by £, where
#(8) is known continuously on contour T'y and ¥(§) is

'y “0 C
(o,h) (1)
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Figure la. Problem geometry for w = z* (ideal fluid flow
around a corner}
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Figure 1b.  Local error in matching boundary conditions
known continuously on I'y, where Iy + Ty = I'and [,NT,, 1, j=k
only at nodal points. The [, and Ty can be composed of a Gy Gy = {0 P (10

finite number of contours. Then the 1y, are computed which
minimize

1= [ 6@ —Re zygrar + [ 0@ -tmzygrar
[y r
@ 7
(7}
Because the g; are orthogonal, the v; are directly computed
by

v = (kr. 89/ (8;- 27) (8)

Then the best approximation (in the L, norm) is given by
. m
@)=Y (g eifle &) 9
j=1

The ¢; are then computed by back-substitution of the
V& functions into the ¢ f; functions. It is noted that by
tﬁis approach, the ¢; are computed directly without the use
of a matrix system generation or matrix solution. This is
important due to boundary integral methods resulting in

the solution of fully populated, square matrix systems,

ORTHOGONAL VECTOR SYSTEMS AND THE BEST
APPROXIMATION

Let Fy be linearly independent vectors of dimension », for
j=12,...,m. Then the Gram-Schmidt procedure can be
used to construct orthogonal vectors G; of dimension n
such that the dot product gives
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Figure 2b.  Local error in matching boundary conditions

-Let B be a vector of dimension 7. Then the best approxima-
tion of B in the subspace spanned by the G; is given by the
vector A where

m
A=) %G, (11)
j=1
where
=B+ GG - Gy) (12}
e ., )
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Figure 2a.  Problem geometry for w =z +z™ fideal fluid

flow over a cylinder}
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The corresponding approximation to B with respect to the
original F; vectors is

m
A=Y GF; (13)
1=t

where the C; are computed by back-substitution of 7;G;
into the respective F; components.

REPRESENTATION OF THE CVBEM APPROXIMATION
FUNCTION BY A DIMENSION mn VECTOR SPACE

Let I be discretized into m boundary elements L, j=
1,2,...,m. On each element, define n interior evaluation
points (usually evenly spaced), resulting in a total of mn
points #; on T'. For each function f; (see equation (4)),
develop the vector F; of dimension mn by

Fi={fi(t: i=1,2,...,mn} (14)

In (14}, the co-ordinates of #; are consistent for each vector
F;, i=1,2,..,m, such that points (¢, ¢;, ..., ty} occur in
boundary element T, The resulting vectors F; form the
basis of a subspace F,,, where each vector F € F,,,, is given

by

i=1
(0,2} ®(2,2)
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Figure 32, Problem geometry for w =z + 27 (ideal fluid
Sflow around a cylindrical corner) '
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Figure 42. Problem geometry for w=2z* [ideal flow
around an angular region)

X

Similarly the boundry condition values defined on I" can
be represented by the vector B where

B={&(e); i=1,2,...,mn} (16)

The best approximation of the vector B (in the I, norm
analogy of the L, norm) by a vector A€ F,,, is given
directly by (11} and (12). The corresponding estimate of
the best approximation @(z) is given by

m
@)=Y g an
j=1
Thus in the above, the best approximation for &(z) is
estimated by using the best approximation from a vector
space spanned by the vectors G;. Appendix A of this paper
presents an example approximation problem which demon-
strates the above discussions.,

IMPLEMENTATION

A FORTRAN computer program was prepared which
developed the best approximation in a vector space (of

dimension ) in order to estimate the ¢; coefficients of
equation (1). The basic steps used in the program are as

foltows:

1. Data entry of nodal point (m)} co-ordinates and
boundary values
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Figure 3b. Local error in matching boundary conditions
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Figure 4b.  Local error in matching boundary conditions

2. Number of evaluation points entered (1)

3. Develop dimension mn vectors Fri=12,...,m

4. Develop dimension mn vector B of boundary values

5. Develop orthogonal vecters G;,j = 1,2,...,m

6. Compute vector coefficients y;

7. Back substitute Gy vectors into F; vectors and com-
pute the coefficients Cii=12,...,m

8. Define ¢;=C; to determine the CVBEM approxima-

tion function, w(z).

It is noted that the ¢;= a; + ;. Thus the above program
steps involve two vectors for each C;,
That is from (1),

w(z)= E oz —zj) In(z —z;)]
i

1

+ § B;[i(z —zj) In(z — z)) (18)
/=1
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Figure 5a. Problem geometry for w=In(z + 1jz—1)
(heat source and sink of equal strength)

Hence the f; vectors corresponding to the ¢; have two separ-
ate compenents which are used, respectively, with the o
and B;. Consequently, for m nodes there are 2m coefficients
to be computed.

APPLICATIONS

In the following, figures are provided which plot flow nets
for heat transport and groundwater flow problems. The
error in matching the boundary condition values are also
included. Because {z) is analytic over {2, the Laplace
equation is solved exactly over £2. Hence, the maximum
error of approximation must occur on the boundary, T.

CONCLUSIONS

In this paper, a new approach for developing CVBEM
approximation functions is presented. Using the I/, norm,
the CVBEM approximation is developed which is the best
approximation in an equivalent vector subspace, Because
orthogonal functions are used, matrix solutions are elimi-
nated; considerably reducing the computational effort and
memory requirements.

APPENDIX A

In this appendix, an example problem is worked to iljus-
trate the procedure outlined in the main text of the paper.
Let £,{3)=sin30¢ for 0 < { <3, where { is a co-ordinate
along . Let £, = ¢, and f2 = ¢ be approximation functions
with w = ¢, fy + ¢2f2 = e, + c,*. For evaluation points,
use ;= (0, 1,2, 3). Hence vectors F; and F; are given by
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Figure 5b.  Local error in matching boundary conditions
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F,=(0,1,2,3), F,=(0, 1,8,27). Similarly, B=(0,0.5,
0.866, 1). Orthogonal vectors G; and G, are developed by
Gi=F, and G;=F,—(F,* G))G/(G,* G)) = F, —7G, =
(0,—6,—6,6). It is readily seen that G, G =0 and are
therefore orthogonal vectors. From (12), 7= (B G}/
(G, -Gy = 0373714, Similarly, 7, = (B+ G)(G2* Gp) =
—0.020333. Thus the best approximation A is given by
A =16+ 1G: = 0373714G, — 0.020333G,. Back
substituting the G; into F; vectors, A=C;F;+ C3F;=
0.516045F, — 0.020333F,. Letting the ¢;=C;, the ap-
proximation for £x($) is given by sin30{ ~ 0.516045{ —

122 Engineering Analysis, 1986, Vol. 3, No. 2

0.020333¢%. In comparison the vector (0, 0.5, 0.866, 1) is
approximated as (0,0, 495712, 0.869426, 0.999144). Simi-
larly, || sin 30{ — Z¢; £; Hl. = 0.006.
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