Convergence properties of the CY BEM: Development
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The Complex Variable Boundary Element Method or CVBEM is studied with respect to development
of convergence properties. Using conformal mapping of the problem domain to the unit circle, con-
vergence of the CVBEM is examined for Dirichlet and mixed boundary value problems. Convergence
is examined with respect to both error bounds of the anatytic functions involved, and with respect to
the matrix systems developed for the CVBEM approximation technique.
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INTRODUCTION

The Complex Variable Boundary Element Method or
CVBEM has been shown to be a useful numerical approach
for the solution of two-dimensional potential problems! In
this paper, the CVBEM will be studied as to its convergence
properties for both Dirichlet and mixed boundary value
problems. These considerations have not been given rigorous
attention elsewhere in the literature, and it is the main
objective of this paper to remedy this need,

Because any analytic function can be recast by conformal
mapping into an equivalent function on the unit circle
{(where known solutions exist), a rigorous convergence
analysis can be developed with the use of only the well-
known Poisson formula, and employment of the often-used
I ffe norms for the CVBEM matrices and vectors involved
in the numerical technique.

Details of the CVBEM numerical approach are thoroughly
presented in the cited reference, but are also briefly con-
tained in the Appendix of this paper for the reader’s
convenience.

SOME UNIT CIRCLE GEOMETRIC PROPERTIES

Before investigating the convergence properties of the
CVBEM on the unit circle, some preliminary results regard-
ing the unit circle geometric relationships are useful.

Theorem A

Let the unit circle have m evenly spaced nodal points z;
such as shown in Fig. 1. In the figure, constant boundary
clements are used where collocation points are defined at
mid-element. Let collocation point Z; have co-ordinates
Zy = 1+ 0i. Then the central angles § between line segments
(241, Zy) and (z;, 7;) are all equal to n/m.

Proof .

From Fig, 2, the circle is subdivided into m sectors with
central angles a=2wfm. Let dy=|z3—2Z;|. Then the
isosceles triangles of points {(z3,2¢, ;) and (z,, zg, Z1) Imply
0 =af2 =ualm.
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Figure 1

Theorem B

Consider the unit circle C with peint Z; (see Fig. 3)
defined at 1+ Of and z an arbitrary point on C such that
0 < # < 7. Then the distance d = |z — zy | satisfies d = 26/n
for0<o<m

Proof

For the unit circle, d® = (cos§ — 1)? +sin@ for0< O <n.
Let f=(cos@ — 17 + sin® @ — (4/7*) 6% then f= 0 for
O0<@<r withf=02tf§=0and7.

Theorem C

Let the unit circle C have m evenly placed points such as
shown in Fig. 4. Let point z" approach point Z, as shown.
Then

lim ¢ =u(m+ 1)/m

z2—Z,
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Figure 2

Figure 3

Proof

The m nodes on C result in (m — 1) sectors which extend
from point £; to each of the nodes z; through z; (counter-
clockwise direction). Thus the figure angle & is calculated as

8 =2m—(m— 1)(%) = n(m + Dym

where each of the (n — 1) sectors has a central angle of
#/m from Theorem A,

CONVYERGENCE OF THE CVBEM FOR DIRICHLET
PROBLEMS

In the following, the CVBEM is studied as to convergence
of the approximation function G(z) to the exact solution
of the boundary value problem «(z). Because the unit
circle is employed, w(z) is given by the well-known Poisson
formula. Theorem D considers the convergence of &(z)—>
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w(z) in the maximum norm sense of |w(z) — &(z)|—+ 0.
The Discusston following Theorem E considers &z}~ «i(z)
as the element size diminishes uniformly to zero, using
norms of the matrices and vectors used in the CVBEM
solution approach. It is noted that this Discussion applies
to both the Dirichlet and mixed boundary value problems.

Theorem D

Let C={z:|z|=1} and 2 = {z:|z| < 1}. Discretize C
into boundary elements using the nodal placement shown
in Fig. 4. Let ww= ¢+ iy be analytic over { and continuous
over C. Let {0,(z)} be a sequence of CVBEM approxima-
tion functions such that each &,(z) is analytic over £ and
continuous over C. Let ¢ be known on C (i.e. Dirichlet
problem). Define e,(z) = w(z) — &,(z) = e¢y, + ie,. For
each boundary clement [z;, 2741, let £'¢,, be bounded by
|e'dp | <M, for § €(z;,2;41). Then |ed, | >0 0n C+ | wy(z) —
w@Z}>0over2UC

Proof

. From the Poisson formula, e¢,, known on C determines
ey, to within a constant by

1 T
ey, =—— feq},, W(6) de
2n

where
(o) = sin@
1 —cosf

{see Fig. 5). Thus a bound for | ey, | is determined by

n H
2 2
|ew,,|<—few09)da +—-fM16W(B)d6
2 2n

8 [
where § = ¢/M; and {e¢, | < ¢, Solving,

Figure 4
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a

1 d{l —cos8) e
feW(B) 46 = fm——————ln(i-—— cos6)
7 T

1—cosé r
& 5

_¢€
= [In2 —In{1—cos8)]
o
For & small, () — cos8) ~ 8%/2 and
€ 2e
~[In2—In{1—cos8)} ~— [1—Ine + In M}
m L
The other integral is solved for & small by

%0240 oM 2

aw(e d3~— §=—
f ®) 82/2 m T

Thus
Ie\b,,i< {2 Ine + InM,}

and fore=max!e¢,,| onC,e~>0=|ey,| 0. Thus,
(@) — walz) | = leg, +iey, | < |ed, | +]eP,i
e
<et+— [2—-Ine+InM)
T
and
e~ 0=2w(@)—w,() >0

Theorem E

Let w(z) be analytic over £2:{z:|z | < 1} and continuous
over C: {z:1z | = 1}. Define boundaries C' and C~ by C=¢'®,
C =Re® for0<0 <2, 0 <R <. Then for {z7|=R™ <R,

w @) d_f = lim M:zm'w(z‘)
t—2z R+1J §—7

Proof

By assumption, w{z) is analytic over €. Then for
|27 | = R” <R, the Cauchy formula gives

2niw(zT) = f —"0;(;.) d_§‘
—z

Consider

W [
t—z {-—-2z"

. i w(E®e®dd  w(Re®)Re" df
- f & —z B Re® —
8=0
- (w(eiﬂ) w(Rem)} Rei‘26
+ 27 e (Rw(Re'?) — w(e‘a))] a6 '
(" — ) (Re'® —27)

0

an R 1) —w(Re) | 1+ 12711 )| R
<f % fw{Rei®) —w(e®) |+ | w(e®) R — 1|z lie )

|e —z7 || Re®® —z7 |

1de|
0

w(z) is uniformly continuous over £ U €. Hence for every
€>> 0 there exists an R, <1 such that | w{e?®) —w(Re) | <e
for R, <R < 1. For { w(z) | uniformly bounded on QU C
by M.

7 [Re + R"Re + R"M(1 — R)] d6
(1—RY@®R—R)

I<

" {26 + M(1 —R)] d6
(R—R)

<2n2e + M —R))/R—R)
Then

' lim [ < 4ne/(1 — R
R—1

Thus for every e > 0,

fw(i') &% — 2nmiw(z7) '<e

lim

R—1 -z

Hence,

i [COE_ eds_

R—1i $—z7 {—z
o C

DISCUSSION ON THE CONVERGENCE PROPERTIES
OF THE CVBEM MATRIX SYSTEM

Let c(z) be analytic in §2: {z : 1z | <1} and continuous on
C:{z: iz |=1}. Define m equilength boundary clements C;
(arcs} with nodal points located on the endpoints of .
Define a global trial function &,,({) on C by
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Gom(®) = ﬁ N®) wz)
=1

where
G —z;_ )z —2;_0,
Ni@©) =1 @j+1—Nzpe1 —2p),
0, otherwise
For { €, define f,,, () by
@) = Gp(®) + ()

where necessarily Sm(§) is continuous on C and f,,,(z)) =0,
F=1,2,...,m. For every m, let If,-({)| be uniformly
bounded on the interior of each C; by 1fn(®) I <M,
$EC— Lz zpn} (e |0 @) <M, fOfi'ECj {zj:z,l+l})
Define the m nodes on C by z; = effi = gl2n(j-1)jm i =
1,2,...,m and interior points z]- by z; = Ret?i R < 1, For
w(z) umformly continuous over §2 U Cj

$€C
feC,

lim w(zg) = w(zg)
Iz

where from the previous theorem,

ey =L O

21r1 §—zx

f[Gm(i')"*fm(i’)] d¢
2111

t—z;
_B 1 [Ca®& T @A
j=1 2mi f—z}, 2w ;“Z;c
G c
Hence for nodal co-ordinate z, € C,
wlzy= lIm wizy)
T
g1 (6.t fm(i’)df
= lm ) —|——+
It j=1 2ni ;’*‘Zk zk-’zk Zﬂ'l

i
For each element Cj, | fp, (s} < M, (Us — )2 for <5<,
where ¢ is a linear local co-ordinate system defined on Cj,
and [ = 2x/m. Then forj # & nor (k — 1),

J‘fm(D 4
2mi §—z,

where d; = mlnlf—zkl, t €€y Then

L f fm($)dl <
2mi ) ¢ —zx

<
Surnming terms forj = 2 through (m — 1) gives

ffm(i') df
2m —Zk

1
J‘Mz (Is — 5%) ds
Son 24,

Zk—‘zk

M,P
24nd;

=k, (k—1)

Lrag.”

lea nv 1
2417 J=2 dj

lim
zk*zk ]-'2

M, m12
48 = 6
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where d; ?26,/-« for 0 < ;<. Noting that the 8 differ

in value sequemlally by 2n{m,
(Mg 13) m
<GolG)
24 /\2n

ffm(_i')zii'
(m i 1)) =Maf (I%n)

Similarly for Cx_jand Cy, and for 2 1§ —z 3| = | § — 2| =5
(local co-ordinate):

f fm() &
2m —z,c
Cr-11Cx

_FM,_Mg(J)
2r : m?

(m -1
lim
I f= 2

2ni

11
X (l+—+—+...+
2 3

lim
z5 —bzk

My(ls—s )ds
21rf (s/2)

where again ! = 2n/m. Hence for any node 2, €C,

ffm(r) € s om b
{—2zy L

Fe= 2mi

and

Inm
| £ ll =M29(‘;;)

Now consider

. lme(i')di'
lim — } ——r

TR~ 3y Zm'c §— 2%

mm LT J‘mew(zp &

Cen gy 2T = —Zq
26 o 2m j=3) §—zy
1 N d
= Z w(z) lim —;@_—{
- R —z
i=1 Lt p k
m
=Y w(z)
i=1

where the 1y, are complex constants nyy = e + i
Combining the above results, for any node zz € C, the
uniform coatinuity of w(z) over QU C gives:

wizyp) = lim w(zg)= Z N (z)) + Fy
T Iy =1

In engineering problems, usually only one of the nodal
values @; or ; is known for each node j. The CVBEM
develops estimates for the unknown nodal values (desig-
nated in vector notation by &,) as a function of the known
nodal values {(designated by ¥;) by setting the unknowns
equal to the appropriate real or imaginary part of the
CVBEM approximation function, &(z). That is if ¢; is
unknown, the CVBEM solves for

by = Redd(zy)

and for \bi unknown,
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Vi = Im&(z) =
m IHE-Nu
where forz, € C, - 12.3531
3 o 2 23easr
w(zg) = lim &{z) o0y 15 29 562
G 8 3o
. R . 1 30 59,3803
Then letting &(z)) = ¢; + iy, the CVBEM solves for an % 7w
unknown ¢ by -
~ m - -~
Ge= 3 (b + By
J=1
or for an unknown \Ilk value using F
5 50
. m - - o
Vie= Y (o + Bixc b5} =)
=1
This solution procedure is written in matrix form by
E,=NuE N
where N, and Ny, are matrices composed of the above e or
Bjx coefficients which correspond to the unknown and
known nodal values, respectively. (It is noted that ¥, does o . , N :
not have the hat designation due to ¥, being known values 0 20 0 40

and the basis functions N({) being exact for the §;. Addi-
tionally, integration contributions computed by the CVBEM
from the known boundary conditions are assumed to be Figure 7
exact due to a proper choice of the basis functions.)
Similar to the CVBEM matrix system, w(z,) values can
be written as w(zz) = ¢ + Yy where

Number of Nodes on Unit Circle, m

1 (GL@)d
) e ——"‘m_ ] +Re lim Fg
gz, 2mi ’ {—z% gz

1 G d§+lm

Y= lim Im— — lim Fy
=z ZmC -2 Zgpr oy
]
In comparison to the CVBEM matrix system,
Eu=Nu&u + N + Fi
80y

Thus the error of approximation is given by
(e — £ = (- N Fy

sl Hence

&y = Bl <= NI Fil

For the unit circle and evenly spaced nodes, empirical
evidence (see Figs. 6 and 7) indicates

(I — N il == 6 (m)
0] @ Thus

. Inm Inm
i) &, — Eull =3(m)9(?)=92 (—)

m

(38)

1Ty @ Pt

30}

03] Number of Nodes, (m) and
03] i i
‘o lim (1&,—&,l=0

ol 8 e

(The matrix norm || (1 — N, ™|l is computed in Figs. 6 and

7 for several values of m. The nodes are evenly spaced on C

0 . , . in this analysis. For each vatue of m, the number of speci-

0 10 20 30 4“0 fied Y-values are increased sequentially from 1 through m

Number of ¢-values specified on C. and H(I—N,)'|l is computed for cach case. All specified
WY-values on C are located contiguously. Figure 7 summarizes

Figure 6 the results shown in Fig. 6.)
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CONVYERGENCE OF THE CVBEM FOR MIXED
BOUNDARY VALUE PROBLEMS,

The remaining theorems further address the convergence
performance of the CVBEM for the common case of mixed
boundary conditions; that is, values of ¢, or ¥, or gradients
of ¢ or ¥ on arcs of the unit circle C. The previous Discus-
sion addresses convergence by consideration of the CVBEM
matrix systems.

Theorem F assumes that w»(z)is analytic on C and there-
fore the error functions e(z), e'(z) and ¢"(z) are uniformly
bounded over the unit circles and its interior. The Discussion
following Theorem F recasts the mixed boundary value
problem into a simpler Dirichlet problem which dominates
the original problem’s error function.

Theorem F

Let co(z) be analytic over QU Cwhere 2 = {z:|z|<1}
and C'={z:1z|=1}. Let {&,(z)} be a sequence of func-
tions analytic over £2 U C such that for each m the functions
&(2), @»(z) and w,,(z) are uniformly bounded in magni-
tude by some M'ER. Define e,,(z) = w(z) — &, (z) where
en(z) = ed,(2) + iey,,(2). Subdivide C into two arcs Co
and C¥ such that C¢ + CyY =C and ¢, is known on C¢
and ¥, is known on Cy. For each m, let

dey, (z)
as ’

E,, = max Ie¢m(z)|,z€C¢:| 0y

where (n,5) are normal and tangential co-ordinates on C.
Then

E, »0=&,(z)+w(z) for zEQUC

Proof

From the hypothesis, e,,{z) is analytic over £2 U C. Thus
each function e, (z), €,,(z), and e,,(z} is analytic and uni-
formly continuous over £ U C for every m. There exists an
M*E R which uniformly bounds (in magnitude) w(z},
w'(z), and w"(z) over QU C. Let M =M* + M?. Then for
every m, each e,,(z), e,,(2), and e,,,(z) is uniformly bounded
by M.

By the Cauchy-Riemann equations,

BeYn(z) _3etm(2)
ds an
thus
3
eq;'"(z) <E,, forzE€CY
n

Then Green’s theorem gives

me [C5) +(5) Jom

f¢m—dc+fe¢mv2e¢m 19} )]
whete
2 e, 9’ed,,
Véeg,, = " + o2 =0 overQQUC

Thus bounds on [, are calculated by
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| =

3
Iy= fecp,,, Z¢m dC|
g

;| b}
<'fe¢m e¢”‘dc|+,f Vm
on
S Cy

< 2nE,,M 2)

e¢de'

Thus, I, ~+0asE,, > 0.
Equivalently,

(ijg%f)z + (a‘;@:’m)z >0 ask, >0 3
But
ul em(@) I = (a“"“;’; (z))z N (aeq;: (z))2
() (ae?;@)z )

From (1}, (2) and (4),

= f lem(2) * d4Q < 20ME,, 5)

Because each e,,(z) is uniformly bounded in magnitude by
M and each e,,(z) is uniformly continuous over U C,
then lep, ()|~ 0 as E,, 0. Thus as £,, > 0, e,,(z) ap-
proaches a constant function over £2 U C. By continuity
over QUC, e,,(z)~> 0. Thus fe{(z) — (2} | >0 as B, > O,

DISCUSSION

Although «w(z) is assumed to be analytic over U C in
Theorem F, the Discussion following Theorem E only used
the assumption that |w"(z)| is bounded on C and ¢ (z) is
analytic over . In the following, the mixed boundary
value problem is reinvestigated by recasting the original
problem into a Dirichlet problem where convergence of the
Dirichlet problem implies convergence of the mixed bound-
ary value problem.

The mixed boundary value problem results in an error
function e(§)=w({)—w(§) for { EC where e(§) =e,($) +
iey (§) and e4(¢) is known on C, and e, (§) is known on

[
%
»
@ 4
(]
§ o
b il ——ft——— Y e

Figure 8
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Cy- For study purposes, suppose e,(§) and ey () are
known as shown in Fig. 8, From the figure, C, comprises
only 2 small portion of the total boundary, C. It is also seen
that € = ]e¢l and €2 ey, | for the corresponding contours
C, and C.. The goal is to determine the max leglover QU C
given the bound e of Fig. 8, as conclude that max |e,| > 0
as€—>0.

Consider the mixed boundary value problem with the
C, and Cy, boundary values shown in Fig. 9. In the figure,
the goal s to make e, as large as possible. Appealing to an
analogy to steady state heat transport, it is immediately
seen that e, must be as large as possible over C such as

.‘;
<
'5'
L

3
1j
I

—

Figure 9

(!*") 1
i/

>
m
[=]
L]

Figure 10

shown in Fig. 9. Necessarily ey =e¢, = 0 at points 4 and
B due to both conjugate functions of w known at these
points. Also, e = M,

A still ‘warmer’ situation would be to define e/ =
e\b,fB = ¢, and ‘insulate’ Cy such that ey = e (see Fig. 10).
Then for this problem |e, | < 2¢ and from Theorem E,
26> 0=}ey | > 0;hence, max eyt > 0.
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