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Chapter 7

Complex Variable Boundary Elements
in Computational Mechanics

by T.V. Hromadka

7.1 Introduction

A new and exciting numerical approach 1o solving two-dimensional potential
problems is obtained by use of the Cauchy integral equation for analytic functions,
The resulting integral equation is readily solvable by computer, and produces a
pair of two-dimensional conjugate harmonic functions which satisfy the Laplace
equation over the problem domain.

Of special interest, however, are the approximation error evaluation techniques
afforded by the Complex Variable Boundary Element Method (CVBEM). One
especially useful technique develops an approximate boundary where the
CVBEM solution satisfies the local boundary conditions continuously. Error
analysis and reduction then proceeds by the addition of nodal points to the
problem boundary where discrepancy between the approximate and problem
boundaries is seen to be large.

In this chapter, the CVBEM will be developed in detail with special attention
paid to linear and constant basis functions specified on the problem boundary.
Generalization to higher order basis functions is also included. Approximation
error evaluation techniques are reviewed, with a focus upon the approximate
boundary method.

7.2 A Complex Variable Boundary Element
Approximation Model

Let 2 be a simply connected domain with an associated simple closed contour
boundary /" Assume that [ is a polygonal line composed of V straight line
segments and vertices {Fig. 1). Let w(7) =¢{z} +iw(z) be a complex variable
function which is analytic on @ o I" where ¢ and  are the state variable (or
potential) and stream functions, respectively. Then the real variable functions
composing w(-) are related by the Cauchy-Riemann equations on £2 w [

2 _v @ __w

= _u 1
éx dy dy dx (h



192 COMPLEX VARIABLE BOUNDARY ELEMENTS

r
(M = node 1
= vartex number 1 _[; = boundary element 1
Fig. 1. DomainQu I Fig. 2. Nodal point distribution on [~

Consequently, ¢ and  are harmonic functions for - € € v I such that

a'p 89 oy By
=0. -+ —==0.
et oy FRCRNE @)

Define on I~ a partition of nodal points {z;,, j=1,2,...,n such that at least at
each boundary vertex there is a nodal point, i.e. m = V. The nodal points are
numbered (sequentially from 1) in a counterclockwise direction around I” (Fig. 2).
Al each nodal point ;, define the symbols ¢, and ¥, to represent specified nodal
values where each value is a real number. Similarly, let ¢; and ; be notation for
the values of ¢(z;) and w(z;) respectively, j =1, 2,....m.
Define 2-node boundury elements I;on I by

r=\r, (3)
=1
where

Fi=izeltzc=z5(l—s)+z4 502521 and I;n Fy=c4y.

The numbering of boundary elements follows the nodal point numbering scheme
shown in Fig. 2.
A continuous global trial function G (-} is defined on I by

H ”m

G5y =2 N g+i2 Ny, (4)
=1 i=1

where a typical basis function is defined for nodal point j by

Nt (S — M5 — ) Z€ y (5)

{(:-:,_1)/(Zj—f,|)« ze
y =
0, - SRS
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EN](Z]'&]

IS,

T = node
I = problem boungury

Fig. 3. The linear basis function relationship to the global trial function

Figure 3 shows the linear basis function and its relation to the global trial
funmon G\ (2). The global trial function is seen to be continuous on / and
Gz =d+ip, =12 .. m

An approximation function (an H, approximation function) can be developed
by defining

. 1 Gi(5) d¢

(”("—2nij[ P ze (6)
where = is in the interior of £ and not on the boundary I, and contour integration
is in the positive sense.

The (=) approximation function will be shown in Sect. 2 to be analytic in £
and therefore has the property that its real $(z) and imaginary (z) components
satisfy the two-dimensional Laplace equation in . The numerical modeling
strategy Is (o try to determine a (<) such that & (z) is arbitrarily close to w()
values for all boundary points - € I". To develop such an approximator, wiz) is
written in terms of boundary elements /7, by

\ ! G (O d¢
@G =5 = | L,__
o 07
” t
2ri > j)ul Sef, o¢l (7)
R0 i =

On each I3, G, (=) is simplified to
Glzy =N, &+ N Gpe = (N + N ) F 1N, @+ Ny @41), - € I (8)
where @; = ¢ + i 4, and N, is used for a shorthand notation for the N;(z) function,

Using (8) the contrlbuuon to @(zy) from each boundary e]ement [; can be
calculated by

|~ Gio) di _ J’ [('I+] )a_);"'(g — ) “—)HI]/(SHI -3 dg

o€, el (9)

[ ) r, 5~ %
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The above equation can be simplified by

f Gy d<

_ (‘:[+| (T)[-—:j (Dj+l} |' d:

N (4 — ax) Cdt:__
r o+ "o (T — 2 Foe=Zn (G—o) o F dm o
Cdd (L — ) dl Zodi di
[ ==+ [ === —-z)+ | =
r,ot— 2o r, LT S r; ¢ 0 r; ¢~ %o
s . Ea i
T TP R o 2 k| S Y
r, 5~ %0 s, ST

where ((j+ 1. j) is the central angle between the straight line segments joining
points =; and =7, to central point 24 € 2 (Fig. 4).

Using the above integrations

i Gi(O)dd - (zo—2))
== — 0+ & —— =
FO

I
(—',‘+1 - 5_;)

_ AZo—Z50)
Ly

of t (10}
‘ ! (Zie1 — 32 !

where Jiy =1n( 34~ 20}/ 5~ 20 ) +10(j + 1, f). The complex value of & (zg) is
determined as the sum of each I contribution by

m ]

2riw(zg) = Z ((bﬁl — @)+ Z [(D;H (zo— ;) — @29 — :;+1)] h_j/(:,n+} - :_,) (11)
=1 j=1

where in (11) it is understood that @,,, | = @&, and 2, = z;. The first summation
term cancels leaving (for linear basis functions)

2Rt @) = 2 [0 (2o~ 250 — @p(za~ 5+ ] 0/ (200 — 2)) (12)
i=1
The above relationship can be written as a complex function

B lzg) = Plze) + 1 §{zg)

| (13)
":Qf;‘-(:q.é;l.ﬁb_z. CERR &m» erJI! ﬁ)Z* L] u.jm)_!_i Vﬁ}(:(}' (f)_)qr_}.? -"Em- U7]~ ‘;Db -“-'j]m)*

Fig. 4. Nodal point geometry
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where -, is any point in the interior of 2, and # and  are real valued functions
representing the real and umaginary components of the complex function wiz).
Should values of ;= q&,+1w, be known at each z;, j=1.2,....m, then (13)
defines a complex valued functien which is analytic in Q, and qb(r ¥y and @y, 1)
both satisfy the Laplace equation in 2. If 2(z) = w(3) on I, then & () =w(2) in

@ and ¢ {(z) is the solution to the boundary value problem.

The usual problem in engineering applications is that only one of the specified
nodal value pair (@,y‘/j_} is known at each z; and, consequently, part ol the
modeling fask is to evaluate unknown nodal values. A method of developing such
an approximation function is to evaluate ¢ (:) arbitrarily close to each nodal point
and in turn, generate an implicit expression of the unknown nodal variable as 4
function of all the unknown variables. The result is »r equations for m unknown
nodal values which can be solved by the usual matrix technigues.

The evaluated nodal values are then used along with the original set of known
nodal values 10 complete the definition of the ¢ (z) approximation function on
ur.

For example, suppose that m nodal points are defined on I, and i, is known for
j=12.....k where (0 <k <) and q?ﬁ} is known for the remaining nodes
j={k+1).....m. Two methods of generating the unknown nodal values are
provided by the following matrix systems:

Case | 'fjl ‘»’j’(:”:'»f/(:'llq;l»u-,‘sm»lﬁh---,V_’m)

G EPED=0CH G P s s )

_ X ) ~ ~ (14)
et SO ) = GG D B T )

qgm : qg(:;i = d)‘ —nn (j)l ----- (ﬁun WI L] !/7»1)-

Case Il b =) =T S, B Wra s W)
By =P =T Praeens P Wi W)
b == b B s )

(15)
';[_j!'\'-f] = ‘.}\/(:RA+I)=¢}(:E+]1 (,f)h.. (.bm lIUI ~~~~~ ipm)

tj’m Ef!‘/(:&;)=lf/(3;s‘-f;|-----.(5m, u‘/]v“”tﬁm)

where z; indicates a point in £ which is arbitrary close to boundary node
coordinate =;. Solution of both matrix systems will result in different ¢ (=) function
definitions. The case I matrix system produces values for the unknown nodal values
such that

dlz)+1w, j=12 ..k

A= (16)
iy +1(zp), F=k+1,..m

Glz) =z +ip(s) = {
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Fig. 5. Problem definition for example. @, node number 1; o, nodal
pownton [ I, boundary element number |

whereas the case II system results in nodal values which do not necessarily agree
with the known specified noda!l values.

Example 1. A simple example problem will be used to construct a CVBEM
approximation function ¢h(z). Figure 5 shows the assumed problem geometry and
the known speficied nodal point values on f°. The true solution to the boundary
value problem is m(z) =2z, The objective is to determine the unknown nodal
values of 1§, . #;. ¢y! and develop an approximation function & (z)on 2 u I

For node 1, (12} can be used to develop the nodal equation for a point = close
0z by

4
2riwiz) = Z] [0, (27— 2y~ @i (zy = S I/ (o = o)
-
Letting =7 be the complex value ¢, + 1 & (where &, and ¢, are both positive real
numbers) and expanding the nodal equation for 7 gives
iy =[@le+ig)—@le,+ig, — /1)

+[@slecHig— 1) — dale,+ie,— F—0]h/(i)
+ (e, +ie,~ 1~ 1) — @sla,+ie —i)hs/(—=1)
+la(exHieg — 1)y —d(e,+ 1) ha/ (= 1)

From Fig. 6,

1 -, —1g .
h=In|——1+i02. )
—ee— 18,
T+i—&,—lg .
By=In | —— S0 302
l—e—1g
1—&, ~1¢ .
hy=In}|-——7— ’+1()(4, 3)
) l+i—e,—14g
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Fig. 6. Geomerric values for nodal point ©

T R .
hy=1n —— |+ 1{(1.4).

1—e&,—le&,

All of the above terms are continuous functions for =7 in the interior of 2; that is,
for £,>0 and & > 0. As =y approaches z;. however, several terms can be
evaluated as a limit. These limiting values are as féllows:

m 2z @iz )= lim2aid{e, +14a)
3

T Ly =

£, 0
) X l—g,—18) | )
= [0 - cm(—i)](llm In ——_'}+1()(2,l))/(1]
5= 0 — g, 18,
g —0 '

i
F @ (- 1) — u‘)g(l-i)](lny 1T1’+%i)/(i)

i

n )
!+i’+7')/( D

+ s (=1 = i) ~ dsy(— i)](ln

R , e T N . .
+ [ary (— 1)—0](11m In §—-men e +1(){1,4))/(—1)
:;:g l—e;— 18,

Simplifying terms,

lim 2ridie+ieg)=n
Py :

£, —

e =0

L=
Lo —

lim In 1 -e—ig = limIn —e —igl +102,1)
5 | |
@3+ @ (0 + D=1 })2+ D
+[@y (1 +1) — @il (—In Y2+ i)

e— 0 Er
£, =0 g —+0

+(o,(]im In—e, ~i¢g]— limﬂ Infi~e.—1¢&|+10(1,4)

)_
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In the above expression. the singularity difficulties due to the term Inig +ig
sum to zero. Additionally, from Fig. 6, (8(1,4) + 8(2, 1)) =27 — (6(4, 3)+ (3. 2))
and the limiting value of these angles are determined to be

: 3
lim (0(1.4)+ 02.1)) = 27 - (§}=u§5.

& =90
Defining lim 2rv @ (7)) =2n1@(zy) gives the following new nodal equation
ELn

for node -, as the hmiting value
3 . ]
2r1 (D)) = o, (—:r- i) + ch[(%-h In ]/2) + 1(? - In |12)]

+ @[ 2]+ @y (=X = 1In J2) +i(E - n }2)].
Separating the nodal equation into real and imaginary components determines two
nodal value equations,
3n - ~
= 2ng(zy) i(‘“’;) gt (G+in V2) 6. - E-n2)p
(=2 pr— (=5 In )2y da— (5 In}2) 7
. In - —
27 dlz, =7¢' +(Z+In}2) o+ (E—1in V2) &,
+(n2) g+ G- 2y i+ (—E=In})2) ¢y

Similar pairs of nodal equations can be determined for the remaining nodal values
at z5. o3 and oy by rotating © w I” so that each node in turn occupies the already
studied zy = 0 + 01 location

For this example problem, define constant coefficients
]+]n]/2 I_ln]/2 "=ln2.

REITT T BTRT T T,
Then the following nodal value equations are determined:
ED == Gt st Bt 2 Gat 7y
Sy =n G+t st vady—pWat ads

Note that in the w(z|) equation the coefficients of the ¢, and ¢, terms sum to zero
and the coefficients of #,, #,, ¥, and @, sum to one. A similar result holds for
the $(z,) equation. The remaining nodal equations are determined as

lw
f

=

i) =ni—ndrt pt bt nditnm
Sy =+t bt b= e+
W) =7 Fa— P2 Gt 3 Wat e Wi+t 730
Pz =m P+t bt b — gt ind
Gz =71 Ba— 2P+ @+ va i+ b+

Py =V Pat W+ Ptrar— W+ s
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To solve for the unknown nodal values of &, @, @;, and i, two methods are
possible. Determine a case I matrix system such as given in (14) or determine a
case Il matrix system such as given in (15).

The case [ matrix system sets the known nodal values equal to the approximation
function values by forcing

Case | by $(=))
Gl _ | d=)
(,53 B ‘5(33)
W4 w(z4)

which gives

Py -0 I U 2N B 7 Nt radi— i
- |- O v oy W N APt ndit g
s 0 - 0 ¥3 AL Rl 2T e
Wy Y b 00 Ly — Pt gt W
or simply
0 I C N I 0
- 0 o | T+ (n}2)/n
0 - 0 5l o 0
73 a7 0 54 %— (In VZ)/rz

which has the solution nodal values (. #, @5, &) = 10,0, 2, 0}.

Similarly, the case II matrix system sets the unknown nodal values equal to the
approximation function values by forcing

Case Il a (zy)
ga| (=)
ml e
®s 96(34)
which gives
W v 7 O N 17 — b+ 3l i
gl o0 o 0w N Rt By + 74 pa+ 72
3 ay N Tl e Nt
@y 0 = yid Ly T+ dat i
or simply
h=1 73 7a P 7 (in2)/n
o=y n 0 i L= (in2)/(2m)
Y4 PR VRl § ! o - T
P 0 = (- 1) (o — L (n2)/2m)

which has the solution nodal values of

{Wl . !Dzu 93, ¢;4} = {Oa Os 2! O} v
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Because the assumed basis functions for ¢({) and w({) (with { € I') are of the
same polynomial order as the solution to the boundary value problem, then the
approximation function ¢ (z) must be the exact solution, and & (z) = w(z) for
ceflRuf.

From this example, the limiting value of @& (z7) as z; approaches node -; with
=7 in the interior of £2 is useful in determining nodal equations. Therefore, a
general relationship is needed to evaluate this limiting value.

Consider a linear trial function between successive nodes {Z;, z3) and (=3, z3).

Thenforzpe Qand (& I

Za “ - Ca : : Zi+a G > o
PRSI LG 1AL TN LT (I L LN S QRO LS 17
8T o & g L # I Te o 2o
Define
G dE T GO S
T=2niding - | —ledde p O (18)

E R 0 v TT S0

For the linear basis function assumpttons, using (10}

]:27116)(:0)—[(2)3-— @ﬁ@,(':_““) ln(zzu:n)—d)g(-l‘wg) ln(::w :0)}
’ = St § I~ o b B i~ %o
.- . R -
—[0)3«— (?)2'1"(2)2(‘-] —”) ln(-2 -0)*@3(-2 _D)h’l(‘3 UH
i o =S i Za— 2o

In the limit as z, approaches =3 (p € 2, 2o € [), e
Wim J=2rid{z) — [(@3— D))+ @ ln(:: ~2)} . (20
g2 = <2
Simplifying,
lim 7= 2 dn= (3= @)+ @l :1 — 2; ~i 2=~ 0)@. (21
Hence. the nodal equation for arbitrary node =; in F 15 -
2AL M= G~ @y ¥ @3 {ln :I ~ _:2 +iQ2a-0{+ X f‘M‘ .12
oI ] s L e TS0

7.3 The Analytical Function Defined by the Approximator o (2)

The approximation function @ (z) is defined by the contour integral

1 !' GI.,(O d‘:‘ ¢ r

2ri 7 L=z

w(s) =

where I is a simple closed contour with simply connected interior £2, and - € £,
Specifically. the usual case is, /™ is a simple closed contour composed of straight
line segments and its interior. £2, has no holes in it (i.e. multiply connected). This
type of domain £ U I is said to be a member of the set of all such domains. P.
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Since G,({) is a continuous function for { € [, then the @ (=) function is analytic
on £2. This important result is proved in the following.

Theorem. Let I be a simple ctosed contour with finite length L. Let #({) be a
continuous function on . Then ¢ (z) is analytic in the interior of I” where @{z) is
defined by the contour integral

. 1 h{{)
n{z) = s
0O =l
and ' (z) is given by the integral
o 1 (L )
5@ = [ D

i (- "

Proof. Since h{{) is continuous on the compact set [ there exists a real
number M such that
[h($y =M for (el

Let -, ¢ I” be arbitrary and set R = d(zg, I} the distance from =, to the contour 7.
To show that @{z) is analytic at zy, it will be shown that the derivative exists at ;.
Let - be any complex number with 'z — 2y, < R/2. Then

GE-dey _ 1| {h(::) R ] dt

=z =g 2mip| L (-
1 1 - .
= . - - () d¢
T—zp 2mi .!' (= 21¢—zn)
_ l.f i /J(Q’) dc.
2ri p (L= 20— o)
Expanding these equations gives
@)=z 1 ho) dgl _ L 5[ ") _h© M
I—=Ip 271§ (- o) 2r -2 -z K=z ]
LI Y S S NARY
271 C=C-=r |
s [ ) A
2y L=zt -z
ﬁ_l__j =0 M dC
T 2m F R(R/¥?
2M - —=
= 1
- n R} ’.—'{g
2ML
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Since the right side goesto 0 as = — 2,

GE - _ ) hiD)

lim ————— = - —d¢

e 2ri p ()

and () is differentiable at any point =y not on the contowr I". Thus, &(z) is
analytic for 7, in the interior of I

From the above important theorem, it is concluded that the ¢ (z} approximation
function contains real and imaginary functions & (z) = ¢(2) + i (2} such that ¢(z)
and @(z) are both harmonic in Q. If & (z) satisfies the boundary conditions which
are specified from the function w(z), where w(z) is analytic on 2 w I” € P, then
@{z)=w(z) for - €2 U I'. However, generally {z) + () for - € I and an
error function e (2} exists on 2 o I where

e(zy=w(z)—wi(z), zel (23)

and ¢{() is not identically zero on Q w I, Thus, the numerical modeling objective
istoreduce e (zYon Q@ w I

7.4 A Constant Boundary Element Method

A simpler modeling approach than determining a continuous global interpolation
function on [ is to assume that the integration contribution from each element [} is
simply
) ai d{

5 —=a; | o= (24)

P Sl Hni—c
where &, is a specified value for element J;. In this medeling approach, the nodal
points are assumed located at midelement (see Fig. 7).

iy

-

Fig.7. Constant boundary eclement geometry. ©, element poims;
® nodal point; {; . midelement node on 1},
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The nodal equation contributions are simply

i (= =&
&, | ==, ln(u) (25)

r;Q_L,.A- e

where {, is the coordinate of node k. Letting d(z,, ;) be the usual distance

function gives

dé 10201, i)

@,j%=(a,-lln(L'f“)+iau+r,j)} (26)
C—k diz;, &

where {/{j + 1, j) is the central angle between coordinates Zie1. 2y and {i. Thus

ds

@ § ——=
;67 Sk

The limiting value for j = & is given by considering

di
lim @, [ — : (28)
S
where = is in the interior of 2. But
ds Zper— I
@y | — —=a‘)kln(L) (29)
roE-c -z
where ;= (Zp + )2 Let 2=+ &, + i g, then
_ dg _ ( (T 1 _3k)/2"3r“i3}')
oy I — = @ In -
re &% (fk—3k+1)/2*€\-“1€_r
and in the limit
d?’
lim | ——=a@,In(-1) =@ 7i.
g—B Iy 5T F°
0
The constant element nodal equation is then
2rid(l)y=demit ), @y k=1.2,...,m {30)

i*k

where it is assumed that s constant boundary elements are used in the model. The
development of case [ and case II matrix systems follows in an analogous fashion
from Sect. 1.

7.5 The Complex Variable Boundary Element Method

The preceding discussions can be generalized to formulate a complex variable
boundary element method, or simply the CVBEM.
Let @ I" e P. Discretize I” into m boundary elements /; such that
r=

!

£
!
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iy I ¢ = glement endpoint node
o = element interior node
r
Zin :
x
a b

Fig. 8. a Boundary discretized into several a-node elements. b Detail of element I;

and the imersection of ;[ is endpoint of /; and f;_;. On each element [;
define twe or more evenly spaced nodal points. Number each boundary element
sequentially from 1 to m along I” in the counterclockwise direction. Similarly,
number the nodal points sequentially from [ as I is transversed in the counter-
clockwise direction.

A second nodal numbering scheme is as shown in Fig. 8 where the endpoints of
an n-node element J; are defined as -;; and -,

Define on each element I; a system of continuous basis functions N, , (<) such
that

l, :=:j.t (31)

N (2) =
I..'() 0’ :=:_,‘;(, k*l

and N, (z) =0 for = ¢ ;. The real valued interpolation functions x4 () and a,,(z)
are defined on [; by

A (5) = SN G, 2 €1,
k=1

2, (2) = 2 Nl2) Fu. 2€ 05 (32)
k=1

where 4_);.k and @, ;, are the specified nodal vatues at node z; ;. For simplicity, the
above function definitions can be written as
9%,—(5) = N,.A- QE,. k
and (33)
Gtw,'(:) = N,n!«' '/7/‘1‘-

Although it is assumed that the same basis functions be used for both () and
%y A2). this is not required. However, the continuity definition of the basis
functions 1s required.

Define a continuous global function G (z) on I by

G =2 (N +iN @), el {34)
j=1

where
G(:;k) = ¢j.k+ i !I/:,k -
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An approximation function @ (=) can be defined on 2w £ by

[ .

(o)== | ——=, e, z¢rI. (35)
ri ¥ -

Because G {z} is a continuous function on [, then ¢ (=) 18 an analytic function in Q.

Therefore, the function ) () can be split into the real and imaginary components

D) =d(y+ig(z)

where ¢(z) and @(c) are real valued functions which satisfy the Laplace
equation on £2.

If ¢(x,v) and w{x, v} are known continuously on [ and the boundary basis
functions are chosen on each f; such that G(Z)y=¢(z)+1w(z) on [, then
@ (z)=cw(z) on £ v . Generally, however, ¢(z} and w(z) are known only on
portions of [ such that ¢(z) is given on [, and w(z) is given on I, where
I, u [, =r. Then half of the specified nodal values are unknown on . Two
methods of estimating values to be used for the unknown specific nodal values are
described in the following:

Case I. Suppose there are N nodal points on I", and N, values of ¢(z} and N,
values of w(z) are known on {” where N, + Npy= N and N, Ny > 0. A set of values
for the unknown specified nodal values can be developed by defining the matrix
system

i ¢;,

# 2

bu, [T . (36)
l._VN,,.,. 1 lf"f""a -1

l{—/_\- lf"‘v

where @, and ¢, indicate specified and approximation functional nodal values
respectively. Solving the above matrix system will determine values for the
unknown specified nodal values (@ ..... Gy P,y ey

Case I1. Analogous to case I. the unknown specified nodal values can be estimated
by defining

¥ ¥
i i
w N, = Ny . {37

qua +1 d)-\’a +1

¢N (5N

‘This matrix system will also determine a set of values for i@, ... @, d_)Nm. el




206 COMPLEX VARIABLE BOUNDARY ELEMENTS

Using either set of values for the unknown specified nodal values on /° will
completely define an approximation function é(z) which is analytic on £. A
property of ¢(2) is as follows:

Case I. The o (z) function values agree with the known specified nodal values,

Case Il. The @(-) function values equal the estimated values for the unknown
specified nodal values.

It can be seen that the Case ] and Case 1l approximation functions differ and
that a better notation for these two approximators is &;(z) and @ y1{z). respectively.
A weighting factor 0= 4#=1 can be introduced such that a more complete
approximation function ¢ () is defined by

@l =ai (1~ n+ dun. (38)

Obviously, ¢ (#) is also analytic on .

Generally, it is preferable to use (1) where all basis functions are linear
polynomials on each I;. Such a model utilizes m nodes and m boundary elements
on I, and is very su:lable for modeling error analysis and subsequent model
refinements.

7.6 Approximation Error from the CVBEM

Let &i(c) be an approximation function defined on © s I~ & P such that

r?)(:)=; _f M e, =gl \
2l {-=

where G({) is a continuous global trial function defined on I Then é{z) is
analytic in Q2. Let I'~ be a simply connected contour which is a constant distance
a* from boundary I” such that "~ lies in the interior of Q. Let e (2) = ¢(z) + i w(z)
be an analytic function defined on £2 U I such that ¢(z) and () solve the subject
boundary value problem. The numerical modeling objective is to determme a2 {z)
such that for some & > {

lew(z)—-o(z)l<e el .
The boundary conditions which are part of the problem are assumed 1o be
known of
@(z), forzel,
and
w{z), for ze [}

where 1, w fp=1", and [, and I; both have finite length. Both 7, and [} may be
composed of a finite number of line segments each of nonzero length.
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In order to indicate what harmonic function ¢(z) or w(z) is known at a certain
pomt = € I, the following notation is used for e (2):

w(z) =4 + AC, (39)
where the symbol 4 indicates

b e (oré,) are (o) values

1; if &g (or &) are w(z) values.

The subscripts & and u indicate whether the nodal value is known or unknown,
respectively.
For any - interior of I, there exists a '~ such that - is interior of /"~ and

1
2ni

N
jald (40)
F-o -z

w(z)=

The approximation function ¢»(z) is analytic on £ and is therefore analytic on /™~
and its interior, 2. Then

+ - . 4]
2mi ,'[ {—z Z?Ii}[ {~z “h

wf{z) =

An error function e () is

e(Z)=wly—-d(z), el wul™. (42)
Then e{z) 1s analyticon Q7w [~ and

Ve(hdi=0, (e uil". (43)

r-

Let =7 be the closest pointon /"~ to z; € I". Using (39),

() =)+ 10 (44)
or
Oz = a8z + 4E.05). (45)
Then
elz]) = A5, () — Ag‘k(:j") +AE, (Y- g, (z;). (46)

Equation (46) can be rewritten as
e(5) = Ak () — SN + A=) ~ St

where the component 4 (&, (z;7) — & (z7)) is known from the given specified nodal
values on [ and from the &(-) approximation [unction nodal values. Thus for
A€k (7} = £e(z7)) known continuously on I 7,

T A0~ 8 dl= T 4,0 = &) di.
r- r-
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Let 6> 0 be a constant distance between [~ and I~ such that miniz—z"1=§
force Mand =~ € 1", then

lim § (300 = SO di=[ 2 (G (O ~ &N dC (47)
and i=lr- r

lim 4200 = &0 dE = § A (G0 - &0 dL. (48)
»0r r
Thus an integrated error measure is determined on I” which relates the integrated

error of the unknown nodal values to the integrated error of the known nodal
values,

§AG ) =& dl=TaE 0 =20 dl. (49)
r I
iy
G f AAE
A 9
a (00 (1,0} X
br A
szi
'IUL - / \
- 7N
2+ 4 \
_ | / \ /“-"“‘--.___
S ot P — e h“"“——..;)
N Nz
B2 4 -
g0 \\ y e
,[' —
b sl
50 -
407
40+
=
2 D& B ol g /5_)
;: £ \-.._\ //’ ) """—-—._________-_______.—-"" = A
o ' -
’ZU: \\v//
———— 8 nodes
-40 B ——— 20 nodes
c-60%

Fig. 9. a Problem geometry for w=¢°. b Plot of 4(&; — £} fpr @ = ¢* problem. ¢ Plot of
A(E, — £, ) for = ¢ problem
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7.7 A CVBEM Modeling Strategy to Reduce
Approximation Error

In Sect. 5 the error ¢(z) function was examined and it was concluded that an
integrated error of the unknown nodal values can be calculated on 1.
A strategy to reduce modeling error is as fotlows:

Step (1): Use a case Il matrix system to estimate the unknown nodal variables.
This systen results -in an approximator @(z) such that generatly
A=) = Sz £ 0.

Step (2): Usmg the dehned approximalor ¢»(z), determine the Ai_(_j) values,
i=1L . B,

Step (3): Determme A(Ep(z) — g:;((:j-}), j=1,2, ..., m

(16,1001

{100,100}

——— Streamiines

a 170 I Y ) 160,04

— L
—a

g————

~-—— 31 nodes {4 nodes on the arc)
——— 52 nades (10nrodes on the arc)

Fig. 10. a Problem geometry for w=Z+Z"" (ideal fluid over a Lylmder) b Plot of
A&y~ forw=Z+ Z! problem. ¢ Plot of 4 (£, — &) forw=Z+ Z7' problem
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Step (4):  Locate regions v, on I” where 4 (£,(z;) — { (z;)) is large,
Step (5):  Add nodal points to each &,
Step (6): Return to step (1).

This modeling strategy is essentially an adaptive integration scheme which
attempts to minimize 4 ({x(z) — £,(z)) on I" by reducing the integration error on
each , due to poor match of G(z} 10 w{z). To illustrate this procedure, several
sample problems will be studied where the solution to the boundary value
problem. e (), is known.

Example 2. Consider the simply connected domain

Q:izl0=x=10=y=1]

****** Streamlines

=

5

z | 0 3 A

= - 08 S

k=] Y aa

[=1}

(="
b

= /

£

s

< ~ [ _,/ %\ £ 4

[«7) P e — -
= N o e e e = i — =1
5 T~

® S~

v

Fig. 11. a Problem geometry for w=21+2Z"? (ideal fluid around & cylindrcal cﬁomer)ﬁ.
b Plot of A(&,— &) for w=22+Z"% problem. ¢ Plot of 4L, — <L) for w=Z-+2Z~

problem
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iy
(1,1.732]

. i \
K E/ KK\ - Streamlines

a (00 1.0 4

Y .

Relative error
[

Retative error
T
|

Fig. 12. a Problem geometry for w= z? (ideal fluid around an angular region). b Plot of
A& — &) for w = Z* problem. ¢ Plot of 4 (&, — £,) for w = Z* problem

and the analytic function = ¢°. Figure %a shows the problem geometry (uniform
nodal point placement). Several trials of approximation were made by adding
nodal points according to Sect. 5. Figure 9b shows the relative error plots of
A& — &) along I, and Fig. 9¢ shows the corresponding plot for 4 (&, —&,)
along . From the figures, the approximation function ¢ (z} better approximates
w(z) = e” along I as the number of nodes are increased.

Example 3. Ideal fluid flow around a cylinder has the analytic model of
w{z)=A{z+ z"). Figure 10 shows the CVBEM results in modeling this problem.

Examples4, 5, and 6. Ideal fluid flow around a cylindrical corner, around an
angular region, and between a source and sink, are shown in the Figs. il
through 13. Similar to the previous applications, plots of the known and unknown
boundary condition CVBEM error distributions are shown.
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iy
-2, 12,2}
—— Streamlines
T 0 [
Ja B E F Ll ]
{~2,00 {-1.00 (0,0 (nm (2.0} X

a Sink Source
2 /
v K L i
Z m—
o
&

A

s h \ \l ~
‘;Uﬁ?/BED!E Fig el K AT o
- TN T T ‘

2 Y

Fig. 13. a Problem geometry for w =log T (source and sink of equal sirength). b Plot

zZ-1 . Z-1
oblem. Plot of e — S =1

A problem. ¢ Plo 4, —¢,) for w ogz_H

of 4 -&) for w=log
probiem
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7.8 Expansion of the H; Approximation Function

In this section, the CVBEM #, approximation function ¢ (c) will be expanded
into the form

@ () =2, P{E) In(z,~ 2) + Ri(9) (50
E

where P_j‘(:) is an order k& complex polynomial on element [}, and R,{z) is an
order & reference complex polynomial. Should the solution to the boundary value
problem «({z}, be an order & {or less) polynomial, then necessarily

Wy () = ()= P¥iz). (51)

The expansion of the H, and H, approximation functions will be developed first,
with the results then generalized to the arbitrary H, approximation function which
is based on order & polynomial basis functions on each boundary element.

Let @ w I e Pand G;(J) be a lingar global trial function. The CVBEM develops
an H, approximation function ¢, () by

- . O, C
2midn)= 3 | LABE (52)
=1

‘: -

where

=U
=1
Solving each of the boundary element integrals gives

o - i N - ‘:J+|
@y (ﬁ) - (——_)} hy
-+t i ~f+t =

where i, =In(z, ~2)~Iniz,~o),andze Qbur- ¢ I
Rewriting {53), the flrst summanon term is zero and

m

rid (o) = Z {0, — o)) + Z

j=1

(33)

2mi(2) i{wm( -_:ﬂ)wo,(:“:’* ”[m(-m ~ln(z - 2)].
=j+1

-}-H (54)

The transcendental In{z, — ) function is multivalued with the principal value
assumed given by

In{z;~z)y=In ;;—z|+iarg(z, - ) (53)

where 0 Zarg(s; —2) < 2x, and z; #+ = Thus point 2 € £2 1s a branch point of the
In(z; — z) function. For convenience, let the branch cut on ln(z; —x) pass from
point = through nodal point =y € I". Then as the boundary integral on /™ is solved in
the positive sense, it is noted that in the evaluation of the f?j terms,

(56)
Inizy —z], when evaluating the integral on element {7

In(z; - u)—{

Inlz — 2!+ 2=i, when evaluating the integral on element I,
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Using the results of {56}, Eq. (54) can be written as
Z_:])—(D](_z_:f)] In{z,— o)

27:1'@,(:):—[@2(_ -
o g Sr oy

4 ('-'_),-(h ~,'"1) — @ (_:—'f” In(z; -z}
=i TS ST
+ [@, ( - ) e (;L” In(z - 2)+2xi]. (57)
=17 —-m B
In (57). the 2ni is added to the In(z; ~ =) term due 10 the complete circuit on I”
around branch point =. The above expansion is simplified by noting
o, \ :”) =, (_:__f" ) + @, (58)
SRR 5T -
and
(a,-(——:_;’”)“@,( =S )_caf. (59)
Tie1 T ST S '
Substituting (58) and (59) into (57) and combining terms,
27y (z) = [ > l( (i”'__w"") - ( Y1 f”f)] (z= =z In(z - ;)J
i=2 =i =il “j+l T =
- [(Dz(_:—:] )“ (U|(__:; )+(7)| ]ﬂ(Z] -Z)
o R I — 0
(60)

! )] [In{zy=z)y+2n1].

P ET O - _
wl( )+LU|_‘(1),,,(
c— =z )T S

= “m

Rearranging (60) gives the final form of the expansion
[( A ) = (wﬁl —~ w_,-” (z—z)In(z,~2)

Sjsl T

2ni(b,(:)=[
i=1

5P Sl

=i

(61)

o) + (@) {(z— :,)] .

=1

+2n1

Thus, the H, approximation function can be written as the sum
(62}

in(z) = E wlz—zyIn(z;—z) + Ri(2)
i=1
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where the 3, are complex constants defined by

] Eve e
Y Zni’ Sl T =z (63}

and R, () is a reference polynomial (of order ) given by

) — @O

R;(:)=O—J|+(T—“‘““") (2":]). (64)
<1 “m

From the expansion of (62), it is.easily shown that the limiting value of d(z)
exists as - approaches node z;

lim @, ()= lz 2z~ ln(z = 20| + Ri(2) (63)
=z i=1
j#i
where for j =/ 1n (63)
_lin}_}!,-(:, ~yIn(z;—=z)=10. {66)

Additionally, should «w{z) be a linear (or constant) polynomial on £ v [", then
@{z) 15 exactly equal Lo w(z).

In a similar fashion, the Hy approximation function can be expanded as (for
appropriate branches of the logarithm)

2aiedg() =2, @; In (:I_L_:) (67)
=1 i
where again @, | = &), 2,4 = 2,. Rewriting (67),
2ridp(zy =@ in(zs— ) — @ In{zy ~ 2y + @, lnz; — o)
—@aln(za—+.. Fa,ln(z -2+ 2x1] - @ Inlz,, — 2 (68)

Thus using the notation that @, = @,

27:i(€)0(:)=[£:l((aj_,—ca,)ln(:,-:) + 271 oy, (69)
=
or in the form of (62),
plc) = [ ii 7 In(z, = 23| + Rel2) {70}
i=
where in this case
;}.=2_—;i(cbj~fa,-4) (71

and
Ro(z) =y, . (72)
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The above procedure can be extended to the H, approximation function @ (2).
Let " be discretized into m {k + 1)-node boundary elements, and assume that
order k polynomial basis functions are used on each element {;. Thus on [}, the
order & global trial function is
K+
Gi()=2 N@.,. (el (73)

i=1
The &, () approximation function is

" G d
229 dy{zy= 2. I—iLi)—c Te ¢l (74)

=i r, [

The contribution 10 (74) from I; 1s determined by

Gy () de K N, AO ¢
!-[ M%Tz‘ ] Wy I }-v gj_ - - (75)
i - - i= i

But each polynomial basis function is of the form

o o+ a S+ o +a L Cel
Nty =g T A (76)
0. (¢
andforz e [;
N :-)=I]" ST (77)
RO 10. I=Zi.. nFELL
Thus
Ny de (oot i CF o ap SR
| ;._(,)_f - ot dg et s kL0 ) el (79)
PR n L

([“H&‘-A "zt a, ) O 2“‘F--~+(Zk"](ff.k"’n-"‘au)}dg

d(_

U Fa T za +a ) f {79)

J

The complex integral is evaluated by

di

(a7 + . +a z+a. |

r ol

= (u; , =% C+a, o) In (m’—}‘:]—) (80)

. ST
Comparing (80) to the results of the H, and H, approximation, function e {c) can
be expanded into the form

dplz) =2, PX(z) In(z, — 2) + Ry (2) (81)
j=1
where Pj‘(:) is an order k& complex polynomial defined on element fi.and R, () is
a reference polynomial of order k& which occurs due to the circuit on I” about
branch point = of the function In(z; — z).
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7.9 Upper Half Plane Boundary Value Problems

Further insight into the CVBEM is gained by examining the approximation
accuracy in modeling Dirichlet boundary value problems in the upper half plane.
In this section, the Dirichlet problem is studied where w(z} is known continuously
on boundary I and a single reference value of ¢(2) is known. The Dirichlet
problem of ¢{z) known on I is analogous to the above case due to JEy=1wmi(z)
being an analytic function (in which case f{z)= —w()+id(z). and Pz s
therefore the stream function of £(2) =i w(z)).

By assumption I” is a simple closed polygon. The Schwarz-Christoffel trans-
formation T(z) maps I onto the real axis (— < ¥ < %), and domain £ onto the
upper half-plane { ¥ > 0}). The transformation is

T =AJ{z=x)p™ (e~ x )™ dz+ B (82)

where the ¥, are angles (Fig. 14): A and B are constants.

Let I” be discretized into m 2-node boundary elements 7, j=1.2. ..., m. Then
the real axis is also discretized into m boundary elements with one element, say I;.
being mapped by T(z) into an infinite length boundary element on the real axis,
f,” (see Fig. 14). Assume the transformed boundary conditions on the real axis are
linear distributions of w'(z) on each [’ except on I;’. where '(2) is a constant
value. (All complex variables are denoted by prime to represent the transformed
result.) Figure 15 shows the assumed boundary condition definition on ",

Tz
¥
o
r I r o
rO A z z 7 Z I
I = boundary 7y = node 1
£ = boundary element 1 7y = 1)

Fig. 14. Mapping of polygon I” onto real axis by T{Z) transformation
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. ~&

Z{ w44 2 x

Fig. 15. Transformed boundary conditions on /™

For the case of ), = w/,; = 0, the solution of the boundary value problem is

w(X) =2 A+ B In(z-z)+Ce+D, zeQul’ (83)

J=\
where the 4,. B, and C. D are complex constants which have the form of the
expanded A, approximation function d ().
To use (83), tet
In(z~-:z)=nR+if}, 0=0=a R;>0 {84)
where R, and (i, are defined in Fig. 16.
Then for every node =,

(4;+ B, ) (In Ry +10)=[(4,+ B, x) In R~ B,y 0]+ i (B, yIn R, + (4, + B, x) 0.

(85)
On the real axis, v is identically zero and therefore for x # ;. j=1,2,... . m
i r=01=3 (4+8,x)6+Im{Cz+ D)
J=1
”m
#(x,y=0)=2 (4+B,x)InR;+Re(Cz+ D) (86)

j=1

where on the real axis, §,= 0 or &,
On each f;, let the boundary conditions be of the form wizel;,y=0)
= a,+ #; x. Substituting the boundary conditions into (86) gives the matrix system

O=ay =n(d+Az+... + A4 ,
X < XNy
0:;b| =7r(B]+Bz+...+Bm)

Fig. 16. Upper half plane Dirichlet problem geometry
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fy?
Yilxl=2r-mz
e

\[/’(Xj=212*\‘%r'
I

A 1 2
_1}/ R Ny

Fig. 17. Example 7 boundary conditions

X
e
Xip1 < X< Nfag

d,=7n A, ] . ,
[ Xpop < X < Xy
bllf =n BHI

Example 7. Let ¢ (v) be given on a 3-element discretization of I'" by (Fig. 17)

0 x<—1
Ix+i. —l=x=|
v = 2n—-mox, l=xy=2
0 xz2
Then 2, =%, by =3 a3 =2n, by=— n Using the relations given in (86), ;1 = 3, and
A=uy/n=2rn/n=2
By=—-n/n=~1.
Likewise,
Ay=~- 1.5 By=15, A =-05 8=-05

and the solution to this boundary value problem ts
(o =(=05-053Inz+ N+ (= 153+ 15)Inz- D+ (2-2)In(z-12),

for y+—-1.2 and vz=0.

It can be noted that the solution w(z) is of a form analogous to the A, approxima-
tion function expansion of Eq.(62).

7.10 The Approximate Boundary for Error Analysis

The CVBEM is used to develop an analytic approximation function (2} which
exactly satisfies the Laplace equation throughout the interior of the problem
domain. €. As the values of & (7) approach the values of the exact solution of the
boundary value problem (=) for all points z on the problem boundary I, then the
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error (0{z)—w{z) is reduced throughout £ u [. By the Maximum Modulus
Theorem, the maximum value of ' @ (2} — w(z) | necessarily occurs for - on I, One
approach to reduce error is to use |d(z) —w(z) to locate additional nodal
points z; on J~ such that the global interpolation function is better adapted to fit
the boundary conditions of the problem. In this fashion, the approximation
function & (z) converges to the true solution w(z) in a fashion analogous to an
adaptive integration approach.

Rather than examining the above error values on the boundary, I', it is usefuf to
determine an approximate boundary [ upon which @(z) satisfies the given
boundary conditions for w(z) on I°. That is, given an approximator @ (), level
curves of constant ¢ or y on [ (where w()=¢+iy and & (z)=d@+1d) are
compared 1o level curves of constant ¢ or i on I where /™ is determined by setting
the known ¢ = ¢ and w= . The resulting boundary I" has the property that é&(2)
satisfies the specified boundary conditions on I, and @(z) satisfies the governing
Laplace equation in the interior, . Consequently. ¢ (<) is the exact solution to the
boundary value problem with the true boundary /™ transformed into the approxi-
mate boundary I".

The utilization of the approximate boundary provides the following features:

1. An exact solution of the subjection boundary value problem is provided for a
transformation of the problem boundary (the complex variable transformation
is undetermined}.

. The approximate boundary can be visually compared to the true boundary as
to closeness of geometric fit.

3. Nodal points can be added to I' to determine a more refined approximation

@ (z) so that I is geometrically closer to I in regions of high discrepancy.

4. The engineer works with a displacement of the problem boundary rather than

examining a more abstract relative error propagation along the boundary.

5. The approximate boundary provides a direct visual representation of the

sensitivity of the approximation (=) in accommodation boundary conditions.,
variations in the I” geometry, and the addition of nodal points.

(=

In the following. several mixed boundary value problems of the Laplace
equation are approximated by the CVBEM. The problems utilize boundaries 7~
which geometrically coincide with lines of constant ¢ or w of w(z). After
developing a ¢ (z), the approximate boundary I is determined by plotting the
corresponding lines of constant ¢ =¢ and ¥ =w from @ (2). In the accompanying
figures. hoth I~ and the associated I are plotied so that a direct comparison is seen.
Intuitivelv. as I — [ becomes small then necessarily '@ (2} — w{z) is reduced
and I — 1 =0implies @(2) = w(c)

A difficulty in using the @(z) function of (52) is that @i(z) =0 for - exterior of
@ U I Thus an analytic continuation of ¢ (z) te the exterior of @ v I is needed in
order to determine 7. One procedure to develop this analytic continuation is 10 use
the finite series expansion of (62) modified to have the angle of the ferm
arg(z, — 2) to be measured wiih respect to branch cuts originating from each nodal
point and extending outwards away from Q[ Figure 18 illustrates the branch
cut definition needed, In this fashion, the analytical continuation of (=) s
available everywhere except across each branch cut.



COMPLEX VARIABLE BOUNDARY ELEMENTS 221

h

Branch-cut from 25

Fig. 18. The analytic continuation of & (z) 1o the exterior of 2w I,
Note branch cuts along I at nodes C,

The approximate boundary is developed by the following steps:

1. Use ¢ (z) to estimate nodal values for the unknown nodal point state variable
or stream function values, 4¢,(z;). '

2. Using the analytic continuation of ¢ (=) given by (62). determine constants 3; by
forcing &(5;) = A&, tz;) + AEp(55). In calculating the 3; values, use branch cuts
which lie exterior of & u [ such as shown in Fig. 18.

3. Determine the approximate boundary I by locating (x, y) coordinates where
level curves of ¢ (z) match the bougdary condition values. Because é)(z;) is now
determined using A (z;) values, I” necessarily intersects [~ at each nodal point
location on [,

Example 7. This problem approximates the classic problem of ideal fluid flow over
a cylinder. The exact solution is known to be w(z)=z+ [/z. The problem
boundary I is specified to be the upper right quadrant as shown in the figure.
Using a 47-node discretization, a ¢ (z) approximator is developed. The corre-
sponding approximate boundary I is plotted along with the true boundary I in
Fig. 19.

Example 7 demonstrates the utility of determining an approximate boundary
corresponding to CVBEM approximation functions. The approximate boundary r
is developed by plotting the level curves of constant potential (or stream function)
which match the boundary condition values on the problem boundary [
Consequently, this technique is directly applicable only to boundary value
problems which have level curves for boundary conditions.

The error of approximation is manifested by the departure of the approximate
boundary from the problem true boundary. Where large spatial discrepancies are
observed, additional nodal points are needed to increase the approximation
accuracy. The approximate boundary can often be argued to better represent the
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Fig. 19. Modeling ideal fluid flow over a cylinder
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Fig. 20. Plot of sireamlines and potentials for soil-water flow through a homogeneous soil

“as-built’” or a more realistic problem boundary than the defined problem
boundary. This latter idea is especially valid in large scale civil engineering studies
where angle points are generally constructed as grossly rounded edges.

To illustrate the CVBEM approximation results within the interior of the
problem domain. Figs. 20 and 21 show groundwater seepage problems with the
approximate boundary, and several streamlines and lines of the constant
potential plotted. Because the maximum error magnitude ¢ must occur on the
boundary, interior values of & (z) necessarily differ from w(z) in magnitude by less
than &
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Fig. 21. Plot of streamlines and potentials for soil-water flow beneath a dam. (Note that
the vertical and horizontal scales differ)

7.11 Locating Additional Nodal Points on I

The success of the CVBEM in developing solutions to the boundary value problem
depends upon the accuracy of the trial function assumptions. Accuracy is
improved by the addition of nodal points on I" due to the subsequent reduction in
the error of the trial function approximation.

The CVBEM offers a highly useful error analysis capability by simply examining
the success of the CVBEM approximator in matching the boundary conditions.
The usual approach to reduing error 1s to add nodal points on [ where the
CVBEM approximator performs poorly in meeting the specified boundary
condition values.

In this section, four methods of examining CVBEM approximation error are
compared as to their effectiveness in developing better &(z) functions by
indicating where additional nodes should be added to [

Methed 1. A plot of relative error in matching boundary conditions continuously
on { is obtained by subtracting the approximator function values (along [") from
the known boundary condition values. Since only one of the conjugate functions
{¢p or w) is known as a boundary condition at a point. this error plot is a
representation of the mixed boundary condition fit. From Sect. 4 it is noted that
the unknown nodal point values can be estimated using a class 1 or class II CVBEM
matrix system. If the class I system is used, further computation effort is needed
due to this type of relative error being zero at nodal points. Thus, interior values of
@ (z) are computed on each I;. If the class II system is used, this error is usually
nonzero at nodal peints, and is readily evaluated. After the determination of the
error plot, additional nodal points are located where there is large error. Should
the error be zero on each I7, then ¢ (z) satisfies the Laplace equation and also the
prescribed boundary conditions, and @ (z) is the exact solution.

Method 2. Generally, the prescribed boundary conditions are values of constant ¢
or y on each I;. These values corresponds to level curves of the analytic function
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w(z)=¢+ 1y After determining a &(z), it is convenient to determine an
approximate boundary I which corresponds to the prescribed boundary con-
ditions. From Sect. 9 an analytic continuation of & (z) is determined which forces
I to intersect I at each nodal point. The resulting contour I' is a visual
representation of approximation error, and I’ coincident with I implies é(z)
= w(z). Additional collocation points are located at regions where /= deviates
substantially from 7.

Implementation on a computer is direct although considerable computation
effort is required. One strategy for using this technique is to subdivide each ; with
several internal points (about 4 to 6) and determine ¢ (z) at each point. Next, £ is
estimated by locating where ()} matches the prescribed Jocal boundary con-
dition. Thus, several evaluations of @& (z) are needed to locate a single point on r.
The end product, however, is very useful since it can be argued that &(z) is the
exact solution to the boundary value problem with 7" transformed to I'. Thus I is a
visual indication of approximation error.

Method 3. This technique includes features from both Methods 1 and 2, and yet
tnvolves a significant reduction in computer effort over Method 2 alone. First, the
error distribution of Method 1 is determined along I between the known function
(¢ or w) of w(z) and the corresponding approximation of ¢3(z). The next step is to
weight the error determined above (desighated as e(z) for z € I') by the tangential
gradient of the function conjugate to the local boundary condition variable. For
example, if ¢ is known on [, then for z € I}, we have e(2)=¢ — $. This relative
error is weighted by 2/ds which is determined directly by finite differences of
@1(2). Using the Cauchy-Riemann refations, an estimated distance of departure
d(F, T, z) between the approximate boundary I” and the problem boundary 7™ at

peint - € [ is given by
O
f’w(:}/?'

In {87) the error ey(z) has a subscript notation for the ¢ function. A similar
relationship holds for the e, () error

d(I, I,z =

(87)

6d)|

d r:zyz=
(I ds |

e,(z)

The final form of error used, V(:), is the ratio

e%(:)/‘%!, if ¢is known at =

2 a-
e;,(:)/l% .

Additional nodal points are defined at locations on I” where V{(z) is large.

An advantage of Method 3 over Method | is that more weight is given to the
error which also has a large distance of departure between f and /. Similarly,
Method 3 provides an improved definition of the error associated with the

(88)

=
D
It

if wis knownat z .
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approximate boundary of Method 2 by including the description of whether ¢ (2}
is lurge or small and I has a large departure from [” simply due to a small normal
gradient of the specified boundary condition vartable. Figure 22 illustrates a
geonietric Interpretation of ¥(z) as a “point area of error” in the CVBEM
approximation. From the figure, the positive area at point =, equals one-half of the
quantity defined in the refations of (88). Also shown in the figure is the actual
approximation value ¢ (#) as a function of normal distance () from point 75 & ",

Method 4. Because G (J) is continuous on I, ¢)(-) is analytic in Q. Thus for - € @
and - ¢ I
| GO dC | () d

e Pyl S P R al 9

But for =y € /. the limit as - — I" (where = € () can be determined and an error
E(zy)is defined by

. 1 Gzg) dS ¢ i
Ea) = lim 5 — | 25 2o (90)
smndml o (o = roC— o
orsimply
] - G (zg) — (D] S
E(zy) = lim j L) = tIlds (91)
c= 2 I & — Ipy
Setting E(z)=0for j=1,2..... m determines a class | or II system of equations.

which are used to estimate values for the unknown nodal variable function. The
objective in this method is to obtain a global trial function such that in the limit
Gzp) = @ (zp) for all -5 € . Thus additional nodal points are located on I” where
G(zy) — @ (z9) 15 a4 maximum.

A comparison of Method4 to Method ! indicates that Method 4 involves
approximately the same computational effort as Method 1, yet includes an error
contribution for both the potential and stream functions. Thus a total error
magnitude is provided by this technique which is not immediately available by the
other three approaches.

les iz

Distance from Zg

Fig. 22. Area of errorat poimt 2z [
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Table 1. Comparison of CVBEM error evaluation methods

Method number 1 2 3 4

Error analysis Relative error of  Approximate Error area Totai relative

approach known boundary  boundary error
condition

Collocation point Maximum value Maximum Maximum Maximum

locating criteria

Computational
effort

of error

Single point
evaluation of
@{}

departure be-
tween [ and I”

Iteration of @& (2)
for gach point
of I

point area of
error

4 10 6 evalu-
ations of & (z)
for I;

value of error

Single point
evaluation of
()

Representation of Relative error Plot of I” for Plot of relative  Plot of total

error plot of boundary comparison €ITOr area relative error
condition match ~ with I” along I~ iG(z)— e (2)!

CVBEM class type 1 I I Ii

used of estimate of

unknown nodal values

Evaluation of @{(z) Yes No Yes Yes

at nodes

Evaluation of @(z} No About4to6 No No

at points within J;

Includes contribu- No No Yes Yes

tions of both har-

monic¢ functions

Approximate 100% 1700% 120% 110%

ratio of computa-
tional effort with
Method 1

Table 1 summarizes the main features of the four methods presented. Included
in the table are estimates of the computational effort (in CPU time) expressed as a
ratio of the considered technique versus Method 1. 1t is noted that although
Method 2 (approximate boundary) generates an easy-to-interpret representation of
the CVBEM error. it requires a considerable computational effort.

The various methods for locating additional nodal points on I is demonstrated
by application of the CVBEM for solving a potential problem. The analytic
solution to this problem is included in the geometry of Fig. 23. The solution
satisfies the Laplace equation and is defined as a function of a local coordinate
x—1 system with an origin specified as shown in the figure. On the probiem
boundary. 7', the potential function is a continuous function of position defined by

(92)

From (92) the boundary conditions are not level curves; consequently, the
determination of an approximate boundary I" (for Method 2) requires further
definition. For this example problem, I' is located by using the condition

dlze M) =1 {x?+p7.

F=iz¢) =307+ =527 (93)
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Fig. 23. Application problem geometrics and exact solutions for temperature. ¢ (x. )
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Fig. 24. Boundary relative error plot (Method 1)

Figures 24 through 27 illustrate the several error evaluation methods for 3 nodal
placements (evenly spaced). '

From the figures, Methods 1, 3, and 4 provide similar abstract representations of
the CVBEM modeling error. However, Method 2 results in a visual representation
of approximation error which is easily interpretable. Often it can be argued that the
precise mathematical description of the problem boundary is not achieved due to
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Fig. 25. Approximative boundaries for three nodal poim distributions (Method 2)
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Fig. 26. Area error plot along boundary (Method 3)
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Fig. 27. Trial function error plot along boundary (Method 4)
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the construction of the prototype. and that the approxtmate boundary I may
actually represent a more probable end product. Because () is the exact solution
of the boundary value problem with [ transformed into I, then the selection of a
" has the advantage of also being associated with the generating ¢ (z) solution.

7.12 Sources and Sinks

Let 2w £ e P. Then the CVBEM develops a function &,(z) analytic on 2 and
continuous on I (for & = 0). Let f;(z) be analytic on 2. Then

F(z) = dn(z )-Zf.( ) {94)

is analytic on €2 for k. a finite integer.
Let w{z) be an analytic function on & u I except at points =, € £ where there
exist sources or sinks. A CVBEM approximation of w(z) is determined by

k
FO =@ +> (=S In(z-=2) (9%)
i=1

where =, € Q. S is the strength of the source, and & (2} is a CVBEM approxima-
tion function determined by approximating the modified boundary condition
vatues of e () + Z Shhi-—z)onrl.

To illustrate the source (sink) function, let point ;= x;+ iy, € Q2. Let = be a
point in €2 and define the radial coordinates

-—z,=Re'. R>0, 0=8<2rn. {96)

At a radial distance Ry from z;, the circumference is 27 Ry, The unit flux (unit
flow per unit cross-section length) in the R-direction is given by

5
q:‘-K:a% 97

where K is a transport coefficient. Then the total flow away from point z; at a
distance of Ry 18
d¢p

Q(R0)=(_K_

aR )(2n Ro). (98)

Ro

For O (R,) assume a constant value Q{Ry) = 0,

o _{,9¢
2K _(R aR) X

Let = 0/(2x= K). Then

~ S =dd - {100)
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where it is noted that ¢(#. R) = ¢(R) due to symmetry of flow from point =;. Then
~SInR=¢(R). (101}
Similarly. a sink is defined as a negative source by
SinR=¢(R). (102)

Thus a flow field containing & sources and sinks described by the analytic function
k
F*(zy=~3 Sln(z-:z,). (103)
im
The function F*(z) of (103) imposes complex values on boundary I". The objective
1s to approximate w(z) on £ v I” where w(z) contains f*(z). For instance, the
domain £ U I” may also be subjected to other effects such as linear flow, corners,
and other possibilities. However we do know values of w{z) aiong the boundary I
which include the effects of F*(z). Thus, to approximate (=) on Q2 u I, the
CVBEM is used to determine a @} (z) which approximates [w () — Ft(o)jon I

7.13 Regional Inhomogeneity

Figure 28 illustrates the case of two dissimilar materials with conductivities K, and
K. for steady state conditions, two conditions are satisfied along the interface:
namely 1) the potential ¢ is a boundary condition for both domains £, and Q,,
and 2) the normal flux : d¢/én’ values are equal for 2, and £2,.

The CVBEM is used for the problem of Fig. 28 by developing two approxima-
tions. one for each of €, and 2;, such that the specified and interface boundary
conditions are both satisfied. The error of the approximations can be evaluated
using the approximate boundary approach where special attention is paid
towards the two approximate boundaries (from Q, and £2,) developed along the
interface.

Because the CVBEM results in square, fully-occupied matrix systems, the analysis
of multple regions can result in very large matrix systems. Consequently, the
CVBEM may become computationally inefficient when dealing with domains
composed of several dissimilar materials.

Interface
£2;

Fig. 28, Dissimilar materials problem
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7.14 The Poisson Equation

The two-dimensional Poisson equation on domain @ is given by
Vip=fix.)), (x.y)eQ (104)

where ¢(x, 1) is a potential function and f(x, y) is a prescribed function of {x, v)
coordinates. Given boundary conditions on the simple closed boundary I
(enclosing the simply connected domain ), the CVBEM can be extended to
approximate the boundary value problem of (104).

Let ¢,(v.v} be a particular solution of (104). Let ¢&*{z) be a CVBEM
approximation of the Laplace equation V>¢ =0 where boundary conditions on I
are specitied by subtracting the value of ¢, (x, y) for {x,v) € £ That is, determine
*(z)on 2 w I such that 4EF are the boundary conditions given by

A=A~ @, . (105)

Then necessarily )*(z) = @* () + 1 §* (=), and the CVBEM solution to the bound-
ary value problem of (104} with boundary conditions A&, on [ is

Py =, () + F* (), e Q. (106)

The above modeling approach is outlined by the following steps:

. Find ¢,(z) = ¢, (x. v) such that V3¢, = f(x, ).

. Evaluate 48F = 18, — ¢ (x vy for(x. vy e I

. Develop ¢* (2) based on 4¢f boundary conditions.

. Develop error analysis based on the solution of step 3.

. Construct the CVBEM solution w (c) by adding, @ () = * () + ¢,(2).
. CVBEM solution to {104} is é(z) = * () + ¢, (=)

L I R B

It is seen from the above methodology that the approximation of the Poisson
equation is simply the application of the CVBEM to a Laplace problem with
modified boundary conditions. Consequently, an important step to this solution
technique is the development of a particular solution, é,(x,y). The fellowing
Tabie 2 provides a few basic particular solutions. It shold be noted that an infinity
of particular solutions are possible for each f(x, ¥).

Table 2. Particular solutions of the Poisson equation

Sy P, (x.3)

k kx¥?2

k kyi2

k k(x?+y7y/4
kx kx3/6

kr kvl

apip—1)x" 2+ bg{g—1)y*? ax?+ byt
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7.15 Computer-Aided-Analysis and the CVBEM

The CVBEM can be used in a computer-aided-design environment where the
engineer or scientist idenifies additional boundary element nodal point locations
based on computer errors in satisfying the known boundary conditions. In this
fashion, the analyst develops a problem geometry which 1s acceptable for
prototype construction, and the CVBEM approximation determines the exact
solution for the potential problem defined over this prototype geometry. Because
the computer interactive technique uses graphical displays, the approach is
efficient and easy to use.

In the previous chapter, the CVBEM has been shown to be a powerful tool for
the numerical analysis of Laplace or Poisson equation boundary value problems.
The numerical approach is to discretize the boundary I by nodal points into
boundary elements (Fig. 29). and then specify a continuous global trial function
G() on I as a function of the nodal values. Using the Cauchy integral, the
resulting integral equation is

bl =5 | SHE (107)
Tl p LTI
where dr(2g) 1s the CVBEM approximation for 25 € 2; and € is a two-dimensional
simply connected domain enclosed by the simple closed contour I,

Because G({) is continuous on I, then &(z) is analytic over 2 and can be

written as the sum of two harmonic functions

D)=y +id(z). (108)

Thus both ¢(=) and #(z) exactly satisfy the Laplace equation over Q.
Approximation error occurs due to & (2) not satisfying the boundary conditions
on [ exactly. However, an approximate boundary I can be developed which
represents the Jocation where @ () equals the specified boundary conditions such
as level curves. Consequently, the CVBEM approximation error can be interpreted
as a transformation of 7~ — I~ where the ultimate objective is 1o have I coincide

7 = element
() = node 1 )

Fig. 29. Modeling I by boundary elements [;
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with I, Because all the error of approximation is due to incorrect boundary
clement trial functions, accuracy is increased by the addition of boundary nodal
points where approximation error is identified 1o be large (i.e., adaptive integration).

As I approaches /” geometrically, the analyst is assured by the Maximum Modulus
Theorem that the maximum approximation error occurs on [ and that the
governing partial differential equation (Laplace) is solved exactly. Consequently,
the final product is the exact solution for a problem geometry which is the
construction tolerance for the prototype construction.

Generally, the types of numerical approximation errors in solving potential
problems is of two forms: (i) errors due to not satistying the governing equation
over 2, and (ii) errors due to not satisfying the boundary conditions continuously
on I". For the CVBEM {and for other boundary integral equation methods). the
first type of approximation error is eliminated due to both ¢ and ¢ being potential
functions. But (z) does not usually satisfy the boundary conditions continuously
on I (if it did, then @ (z) = w{z)). The next step in the CVBEM analysis is to work
with ¢»(2) in order that () = w(z).

This step in the analysis of approximation error provides a significant advantage
over domain numerical methods such as finite elements or finite differences. In the
domain methods, the analyst examines error with a form of vector space Cauchy
convergence criteria by arbitrarily increasing the domain nodal densities and
comparing the resulting change in estimated nodal values. Whereas with the
CVBEM. the analysis has several forms of the approximation error to work with.

The easiest form of error to study is the development of an approximate
boundary [ which represents the location where ¢(z) achieves the problem
boundary values of wi(z). Generally, the boundary conditions are constant values
of ¢ or w along boundary elements, i.e. ¢ = ¢, forz € [ or y =y, for z € ;. This
set of s/ nodal values (¢, w are level curves of w(z). The approximate
boundary I is determined by locaung those points where = ¢, and ¥ = ;. Due
to the collocation process, I* intersects I at least at each nodal location, 5,
J=12..... 5

To delermme I, each element [ is further subdivided by mterlor points where
() is to be evaluated. At each elemenl interior point, ¢» (=) is calculated from the
Cauchy line integral and the values of ¢ and ¢ are determined. If the appropriate ¢
{or ) matches the boundary condition on [}, then [ intersects [ at that point.
Otherwise, subsequent points are evaluated by marching pointwise along a line
perpendicular to f; until the boundary condition value is reached. For point
locations interior of £ I, an analytic continuation of ¢ (z) is used.

In this fashion, a set of points is determined where & (z) equals the desired ¢; or
yr. values. The contour [ is estimated by connecting these pomts with straight
lines. Because f* and I intersect at least at nodal point locations, /* appears as a
plot which oscillates about the I~ contour.

It is convenient to use a graphical display of both [~ and " superimposed on the
CRT. By magnification of the departure between I and ", the analyst can easily
inspect the performance of the CVBEM approximation. Because the approximation
error is due to the assumed basis function assumptions, the integration error is
reduced by the addition of nodal points on I, similar to an adaptive integration
technique.
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The addition of nodat points can be made directly via the CRT screen and a
“locating the closest boundary coordinate” computergraphics subroutine. After
the nodal additions are completed, a new @(z) is determined and the revised I~
plotted on I". By the addition {and deletion) of nodal points from I the analyst is
able to quickly evaluate the quality of the CVBEM model. Because the addition of
a nodal point can be interpreted as the addition of an approximation error sink
term. the geometric representation of error by means of I° provides a mathe-
matically sophisticated yet easy-to-use modeling 100l
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