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 Applying the Method of Fundamental 
Solutions to Algid Soil Freezing Fronts 



• Goals:  

– Model a 2-D advancing freezing using the method of 
fundamental solutions (MFS) 

– Upgrade technology 

• Quasi steady-state temperatures along boundary 

 

 

Problem Introduction 



• Danger posed to roadway embankments  

• Interested in: 

– Locating freezing fronts 

– Estimating heat flux values  

• Advantages of MFS: 

– Adaptive 

– More convenient 

• Advantages of Matlab 

Problem Motivation 



• Identify research goals 

• Achieve goals 

• Conference presentation 

• Defend research 

• Continue work 

Project Process 



• Goal: Approximate a function over a given domain 
from known data points i.e. fluid flow, heat transfer 

• Known points on boundary 𝑃𝑗  (collocations) 

• Nodes outside problem domain 𝐵𝑗  with coefficients 

𝑐𝑗 

• Use least squares to solve for 𝑐𝑗  coefficients to 

reduce error 

• Approximation function is  𝑐𝑗
𝑛
𝑗=1 ∗ 𝐵𝑗(𝑃𝑗) 

Methodology: Method of 
Fundamental Solutions 



Methodology: Application to 
Freezing Fronts 

• Consider a heat flow problem defined on domain Ω 
with an exterior boundary Γ 

• Objective equation; solve for s (spatial term):  

𝐿
𝑑𝑠

𝑑𝑡
=   𝑄𝑛𝑖
𝑖

 

 Figure: Roadway 

Embankment 

Problem and 

Nodal Placement  



• Heat flux across interior given by: 
𝑄 =  −𝐾∇𝜑 

where 𝜑(P) is the flow potential at any point P. 

• For 2-D problems: 

𝑄 = 𝑄𝑥 + 𝑖𝑄𝑦 = −𝐾
𝜕𝜑

𝜕𝑥
− 𝑖𝐾
𝜕𝜑

𝜕𝑦
 

• 𝜑(P) satisfies the Laplace Equation: 
∇2𝜑 𝑃 = 0 

• Seek to find: 

 𝑢 𝑃 =
𝜕𝜑

𝜕𝑥
= 𝜑𝑥(𝑃)  and    𝑣 𝑃 =

𝜕𝜑

𝜕𝑦
= 𝜑𝑦(𝑃) 

 where 𝑃 ∈ Ω. 

 

Methodology: Application to 
Freezing Fronts 



• Approximation  Function: 

 𝜑𝑛 𝑐, 𝐵; 𝑃 =  𝑐𝑗
𝑛
𝑗=1 log |𝐵𝑗 − 𝑃|      𝑃 ∈  Ω   

• Choose 𝑐𝑗 and 𝐵𝑗  to minimize least squares 

functional 

 

Methodology: Application to 
Freezing Fronts 

Figure: Roadway 

Embankment 

Problem and Nodal 

Placement  



• Velocity Components: 

 𝑢 𝑃 =  𝑢𝑛 𝑐, 𝐵; 𝑃 =
𝜕𝜑𝑛

𝜕𝑥
=  𝑐𝑗
𝑛
𝑗=1

(𝑥 − 𝑎𝑗)

|𝐵𝑗−𝑃|
 

 𝑣 𝑃 = 𝑣𝑛 𝑐, 𝐵; 𝑃 =
𝜕𝜑𝑛

𝜕𝑦
=  𝑐𝑗
𝑛
𝑗=1

(𝑦 − 𝑏𝑗)

|𝐵𝑗−𝑃|
 

• Objective Equation; solve for s: 

𝐿
𝑑𝑠

𝑑𝑡
=   𝑄𝑛𝑖
𝑖

= (−𝐾
𝜕𝜑𝑛𝑖
𝜕𝑥
− 𝑖𝐾
𝜕𝜑𝑛𝑖
𝜕𝑦

𝑖

) = 

 (−𝐾𝑢𝑛𝑖(𝑃) − 𝑖𝐾𝑣𝑛𝑖(𝑃)

𝑖

) 

 

Methodology: Application to 
Freezing Fronts 



Anticipated Results 

Figure: Estimated Freezing Front Locations  



Follow-on Work 

The Conversion  

• Upgrade technology to Matlab 

 Improve computational efficiency 

 Include MFS in conjunction with Complex 
Variable Boundary Element Method (CVBEM) 
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