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     In this work, we develop a numerical method for modeling the evolution in time of a 

groundwater mound on a rectangular domain. The global initial-boundary value problem is 

assumed to have speciýed Dirichlet boundary conditions. To model this phenomenon, the 

global problem is decomposed, a steady-state component and a transient component. 

These components are governed by the Laplace and diǟusion partial diǟerential equations, 

respectively. The Complex Variable Boundary Element Method (CVBEM) is used to develop 

an approximation of a steady-state solution known as a background flow regime. A linear 

combination of basis functions that are the product of a two-dimensional Fourier sine series 

and an exponential function is used to develop an approximation of the transient solution. 

The global approximation function is the sum of the CVBEM approximation function for the 

steady-state component and the Fourier series approximation function for the transient 

component of the global problem. To validate this method, we apply it to two sample 

problems. This work was presented at the 2019 American Institute for Professional 

Geologists conference and has subsequently been refined based on feedback there. 

Description of Groundwater Test Problems 

     Groundwater mounding occurs when water infiltrates the subsurface at a rate faster than 

it dissipates below the normal water table, forming a bulge. As time passes, the excess 

water continues to infiltrate below the water table and the mound dissipates. Figure 1 

depicts this dissipation process modelled by a sinusoidal function of two spatial variables. 

 

 

 

 

 

 

 

   

 

   In this investigation, groundwater flow is formulated into two problems where the same 

mounding effect occurs over different background flow regimes. These problems will act as 

tests for evaluating the computational method developed in this study.  

 

 

Numerical Method Development 

Conclusion 

Numerical Solutions to Test Problems 

Figure 3: A Contour plot of the steady state surface corresponding to the 

planar flow background regime. 

Figure 2: A Contour plot of the steady state surface corresponding to a 90° turn 

flow background regime.  

Test Problem A models a background regime consisting  of flow with a 90 bend. 

Problem A is formally stated as;  

Test Problem B models a background flow regime consisting of planar flow. 

Problem B is formally stated as; 

     Groundwater þow vector gradients are determined as standard vector gradients of the 

resulting global potential function outcome. Since both the CVBEM outcome as well as the 

Fourier series approximation of the transient solution are functions, it is possible to calculate 

the gradient of their sum, which represents the global approximation function. This results in a 

vector ýeld representing streamlines, which are orthogonal to the iso-potential lines. 

The global approximation functions that were used in assessing the maximum error of the 

global approximation function for various time steps was created using eight terms in the 

CVBEM approximation function and eight terms in the transient solution approximation 

function. The maximum errors that are presented in this section were approximated by 

comparison of the global approximation with the analytic solution at 2,500 uniformly spaced 

points within the problem domain. 

     Figure 3 shows the two-dimensional þow ýeld vector trajectories corresponding to the 

dissipation of the mound in Test Problem A for several model time instances. From these vector 

plots, it is seen that as the groundwater mound dissipates with time, the þow regime vector 

ýeld transforms from a combined þow ýeld regime into the þow ýeld representing groundwater 

þow in a 90-degree bend (the steady-state solution). 

 

     Figure 4 shows the two-dimensional þow ýeld vector trajectories corresponding to the 

dissipation of the mound in Test Problem B for several model time instances. From these 

vector plots, it is seen that as the groundwater mound dissipates with time, the þow regime 

vector ýeld transforms from a combined þow ýeld regime into the þow ýeld representing planar 

þow (the steady-state solution). 

Figure 3: Time evolution of groundwater mound with underlying flow around 

a 90-degree bend 

Figure 4: Time evolution of groundwater mound with underlying planar flow 

     In this work, we developed test problems in groundwater mounding for the purpose of 

assessing computational software. Further, we develop a numerical method for modelling 

groundwater mound evolution. Our method decomposes the problem into a steady-state 

component governed by the Laplace equation and a transient component governed by the 

diffusion equation. These are modeled by the CVBEM and a Fourier Sine series respectively. 

We were able to validate our method  and determine error by applying the model to test 

problems with known analytic solutions.  

Figure 1: General evolution of a groundwater mounding phenomenon with 

background flow regime  

     To develop a numerical method for modelling groundwater mound evolution, the global 

problem is decomposed into two components; a steady-state component and a transient 

component. The steady state component is governed by the Laplace partial differential 

equation, Ўό π, and the diffusion partial differential equation, Ўό . The global 

solution is the sum, ό  ό ό of a steady-state and transient solutions.  

     The Complex Variable Boundary Element Method (CVBEM) is used to develop the 

approximate potential function description of the steady-state condition. The CVBEM is a 

linear combination of analytic complex variable basis functions of the form 

ύᾀ ὧὫ ᾀ 

where ὧ is the Ὧ  complex coefficient, Ὣ ᾀ is the Ὧ  member of the family of basis 

functions being used in the approximation, and p is the number of basis functions being 

used in the approximation. To approximate a solution to the steady-state problem, i.e. 

determine suitable ὧ coefficients, the CVBEM is applied to the boundary conditions of the 

global BVP. Once the coefficients are known, it is possible to approximate the potential 

function of the steady-state situation by applying the coefficients to the real part of the 

CVBEM approximation function. Likewise, it is possible to approximate the corresponding 

stream function by applying the coefficients to the imaginary part of the CVBEM 

approximation function. 

 


