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Introduction  
The Complex Variable Boundary Element Method (CVBEM) 

motivated this work by way of using approximations to solve 
complex variable equations, such as a complex variable Taylor 
Series. The CVBEM was introduced in Hromadka and Guymon 
(1984) and has been the subject of numerous investigations 
and applications throughout several facets of engineering. 
Among common applications of the CVBEM in engineering are 
fluid flow, hydraulics, and heat transfer. In 2002, Hromadka 
extended the CVBEM to three-dimensional (3D) domains of 
irregular geometry to accommodate practical problems that 
commonly occur in geoscience topics. For example, a 2017 
study examines unsteady groundwater mounding problems 
(Wilkins, et al.) and Johnson et al. (2016) studied application in 
freezing and thawing soils in algid climates. Other applications 
are reported in the literature. More recently, Hromadka and 
Whitley (2014) provided a development of multi-dimensional 
applications using two-dimensional complex variable basis 
functions within the usual CVBEM framework. In tandem 
with this on-going research is the evolution of the visual com-
putational error measure called the Approximate Boundary 
Method (ABM). First introduced in “CVBEM Error Reduction 
Using the Approximate Boundary Method” (Wood et al., 
1993), the new techniques discussed here refine the accuracy 
achieved by the ABM by visually displaying the computational 
errors in position versus the number of nodes used in the 
approximation. 

The CVBEM encompasses considerations of other variants 
of the general procedure such as the Method of Fundamental 
Solutions, or Generalized Fourier Series, and so forth. It is 

noted that the CVBEM is based upon use of complex variable 
analytic functions as basis functions.1 Since the modeling basis 
functions are analytic, linear combinations are also analytic 
functions on a properly defined, simply connected domain, D, 
enclosed by a simple closed boundary, B. A real function that 
satisfies the Laplace equation is said to be “harmonic”, and 
there exists an analytic function whose real part is the consid-
ered harmonic function. The Cauchy-Riemann equations state 
that the imaginary function portion of an analytic function is 
known within an integration constant, and can be determined 
from the real part of the analytic function. Therefore, both 
real and imaginary parts of the analytic function satisfy the 
Laplace equation and are harmonic functions. Additionally, 
being conjugate functions, level curves of the real part are 
orthogonal to level curves of the imaginary part, resulting in 
the well-known graphical display of “flow nets” that apply to 
numerous applications in science, mathematics, engineering 
and related fields. Such properties do not similarly exist for 
real value approximation functions and associated computa-
tional methods.

A Taylor Series expansion is a method used to evaluate a 
given function with infinitely many terms, as shown below. In 
engineering, these expansions are typically used to approxi-
mate functions by using only a small number of terms for a 
value when used to evaluate the function, ultimately saving 
time and resources for near-exact solutions. The successive 
derivatives, one of the unique features of a Taylor Series, are 
seen in the numerator of each term of the expression. In the 
complex domain, any function that is analytic at a given point, 
say z, will have a Taylor Series about that point. Therefore, it 
follows that the series will converge on f(z) at each point z in 

1. For discussion of a particular (but very important) case, see https://en.wikipedia.org/wiki/Basis_(linear_algebra)
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Using Taylor Series to Assess 
Goodness of Groundwater Models
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Abstract
A SUREOHP�RI�KLJK�LQWHUHVW�WR�SUDFWLWLRQHUV�DQG�UHVHDUFKHUV�RI�JURXQGZDWHU�ÁRZ�SUREOHPV�LV�WKH�JRRGQHVV�RI�RXWFRPHV�

produced from computational models. With domain-type computational models in frequent use - for example, those 
LQYROYLQJ�ÀQLWH�HOHPHQW��ÀQLWH�GLIIHUHQFH��ÀQLWH�YROXPH��RU�RWKHU�WHFKQLTXHV���WKH�WRSLF�RI�GLVFUHWL]DWLRQ�HIIHFWV�LV�RI�KLJK�
interest in assessing the goodness in model results. In this paper, we investigate the use of Taylor Series approximation 
to demonstrate the anticipated effectiveness of levels of discretization. We show how Taylor Series can be effectively used 
to evaluate anticipated departure between computational outcomes and the underlying analytic solution to the governing 
mathematical system of equations.
Keywords - Taylor Series, Groundwater Models, Complex Variable Boundary Element Method
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the finite plane. Whenever a finite number of terms is used, it 
is considered a Taylor Series approximation. Several studies, 
including this one, focus on how efficient these approximations 
are for evaluating specific problems. The general case for the 
Taylor Series is

In this work, the CVBEM approximation technique will 
be formulated using complex polynomial (monomials) basis 
functions instead of the usual products of complex polynomials 
with complex logarithmic functions. The resulting formulation 
has direct ties with the Taylor Series formulation for analytic 
functions. Using flow nets developed from the CVBEM approxi-
mations, the modeling effort focuses on increasing computa-
tional accuracy until the CVBEM model flow net arrives at an 
acceptable geometric approximation to the problem boundary 
conditions. At this stage of model development, Taylor Series 
can be used to examine the precision of computations based 
upon the more general finite-difference, finite element, and 
finite volume type approaches. In this way, one can assess 
the precision of the domain model under consideration, and 
evaluate the departure between the domain model computa-
tional outcome and the underlying solution to the governing 
mathematical system of equations. Such assessment provides 
more information useful towards discretization density deter-
mination of modeling nodes and cells while possibly reducing 
computational burden.

Real Variable Taylor Series Animations
The Taylor Series corresponding to a function requires that 

the target function have derivatives of all orders. This require-
ment is similarly found with complex variable functions that 
are analytic. Both the real variable version and the complex 
variable version of Taylor Series are of similar construction, 
resulting in a sequence of function terms that relate the vari-
ous orders of derivatives with monomial terms and associated 
constant coefficients. This sequence of terms is summed to form 
a series, where the first n terms is called the nth partial sum. 
Because the Taylor Series involves an infinite number of terms, 
only the initial portion of the series is used in approximation 
problems. How these “partial sums” behave is demonstrated by 
the example case studies presented and corresponding graph-
ics. Intuitively, increases in the partial sum number of terms 
generally correspond to improved computational accuracy. Of 

special note is that the Taylor Series includes an error bound 
term that provides an upper bound estimate to computational 
error associated with a target partial sum. Of value to the 
computational modeling is that Taylor Series can be used as 
a case study to test the desired computational model and then 
use the resulting Taylor Series solutions and computational 
error for the known problem solution to assess the computa-
tional error associated with the target computational model 
as applied to the test problem. In this way, the Taylor Series 
can be used as a test case to assess the goodness of the target 
computational model, including issues such as modeling nodal 
point spacing and density, and so forth. 

The sensitivity of the approximation to the number of terms, 
n, is demonstrated by the animations provided below. In the 
key to each graph, the numerical value is representative of the 
number of terms used in the evaluation. For instance, T0 is 
simply the function solved with n = 0, where T10 is the Taylor 
Series expansion to the 10th term. Figure 1 demonstrates the 
effectiveness of a partial sum on a function with a singularity 
at point x = 1. 

In the following two figures, pay special attention to the fit 
of each line in respect to how many terms the line represents. 
Notice how the T0 is simply a line that only fits the specific 
value, and with the addition of each term the line becomes 
more closely related to the desired function. The T10 line 
stays along the original function line for the largest range of 
values, as anticipated.

In Figure 2, an example without a singularity, the differ-
ence is far more distinguished. Just as before, notice how the 
addition of terms makes the partial sum approximation more 
closely resemble the desired function.

Examining the Complex Variable Taylor 
Series Term

In the complex domain, a Taylor Series is a sum of complex 
monomials. Each complex monomial is an analytic function 
and is composed of its real part and corresponding imaginary 
part, with both parts being harmonic, two-dimensional real 
functions that satisfy the Laplace equation. Furthermore, 
these two parts satisfy the Cauchy-Riemann equations and 
therefore are complex conjugate functions where either part 
is derivable from the other. These can be visualized using flow 
nets. To demonstrate the flow nets for such complex monomi-
als, the following depictions are presented for the first several 
monomial terms. 

Figure 1 - A depiction of a function f(x) =  with a singularity at x = 1 evaluated at x = 0.5 (left) and x = 1.5 (right). 
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It is noteworthy that these individual 
flow net diagrams can be combined via 
the Taylor Series formulation as in a 
partial sum construction and plotted, 
resulting in a flow net corresponding to 
the partial sum. Shown in the following 
is the evolution of the partial sum flow 
net with increasing numbers of terms in 
the Series for the classic complex ana-
lytic function ez. It is noted that these 

Figure 2 - A depiction of function without a singularity evaluated at point x = -3.

partial sum flow net visualizations are 
combinations of the individual complex 
monomial flow nets, weighted according 
to the complex derivative term values 
evaluated at the selected expansion 
point.

In the Taylor Series formulation, 
we determine the entire spectrum of 
complex variable derivatives and then 
evaluate at a selected expansion point, 

Z0, that is held constant for the evalu-
ation of the entire series. Of course, 
the entire spectrum of terms involving 
complex derivatives is evaluated at the 
chosen expansion point. The complex 
monomials that are also evaluated with 
respect to the chosen expansion point, 
Z0, depend on the chosen expansion 
point location.

Figure 3 demonstrates the flow net 
for the exact solution. We present this to 
show what, in theory, the Taylor Series 
partial sum approximation flow net 
should look like as well once the approxi-
mation includes a sufficient number 
of terms. The series of four flow nets 
in the figure below demonstrates how 
quickly the addition of terms can model 
a complex example of the Taylor Series 
partial sum approximation. With only 
four terms, the graphic is nearly identi-
cal to the exact solution.

When comparing the flow net for four 
terms (the bottom right portion of Figure 
4) to the flow net for ten terms (Figure 
5) on page 60, it becomes apparent that 
there is a diminishing return beyond the 
fourth term in this instance.

The computational power required to 
solve a Taylor Series approximation is 
much less than that needed to find an 
exact solution. Some complex problems 
would require exact solutions that take 
hours or even days for a machine to solve, 
when a Taylor Series approximation to 
the fourth term, for example, is much 
more rapid. The saved computing time 
translates to both monetary savings and 
the creation of potential to address other 
problems.

Suggested Future Work
There are several key topics that 

need additional research. For example, 
multiple dimension Taylor Series would 
be important to apply in order to identi-
fy detailed aspects that require further 
work to resolve. Additionally, inclusion 
of the time derivative in a Taylor Series 
expansion may help improve upon the 
research. Another step towards proper 
development and application of such 
models is to apply all coefficients from 
a complete Taylor Series at a single ex-
pansion point. Observing how the total 
function performs with such informa-
tion is still under investigation. Other 
topics are readily available for further 
research as well.
Conclusions

It is readily noticed that in order to 
develop the relevant Taylor Series par-
tial sums that the solution to the govern-
ing equations must be known. However, 
using the graphical visualization of the Figure 3 - The exact flow net for the function ez on the domain [-1,1].
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Figure 4 - The Taylor Series approximation of function ez with one term (top left), two terms (top right), three terms (bottom left), and four 
terms (bottom right).

partial sum, estimates of these deriva-
tive terms at the selected expansion 
point can be developed by “fitting” the 
approximation flow net boundary iso-
contours to the known problem boundary 
conditions iso-contour. This is a proce-
dure called the “approximate boundary” 
fitting to the true problem boundary 
and involves a graphical visualization 

of computational error. The measure of 
“goodness of fit” between the complex 
approximation (partial sum) and the 
problem solution is the “goodness of fit” 
between the partial sum flow net and the 
problem boundary conditions.

The ability to use methods such as 
this one will allow use of non-standard 
modeling methods to determine more 

accurate approximations in problems 
dealing with geoscience topics such as 
groundwater flow estimates. 
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