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a b s t r a c t 

The Method of Fundamental Solutions and Boundary Element Method commonly involve development of approx- 

imation functions featuring linear combinations of basis functions dened over the problem domain and boundary. 

These basis functions are selected with respect to the governing partial differential equation (PDE) being approx- 

imated, and are customarily fundamental solutions of the PDE operator. Points where singularities occur are 

known as source points and are traditionally uniformly distributed outside the problem domain. In this paper, 

basis functions with singularities at source points are examined with interest in optimizing the placement of the 

corresponding nodes to reduce computational error while also reducing the number of nodes involved. A motiva- 

tion for such an optimization is the reduction in matrix solver requirements in solving large dense matrix systems. 

An algorithm is explored that has been shown to provide such an optimization capability with a 3D case study in 

steady state heat transport. It is shown that by including the nodal position coordinates as additional variables 

to be optimized, the resulting approximation function is improved in computational accuracy by increasing the 

number of degrees of freedom to be optimized. 
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. Introduction 

In this paper, a new procedure for determining nodal point loca-

ions is presented. The new methodology establishes the set of nodal

oint locations as another and powerful set of variables that can be op-

imized similar to the other modeling variables. This enables more pre-

ision in the modeling results and a significant reduction in the number

f nodal points used one the model. This later attribute is of high im-

ortance when assessing large matrix solutions where computational

uccess depends on the dimension of the matrix system under analysis.

he three-dimensional Laplace equation with Dirichlet boundary condi-

ions is investigated in a simply connected problem domain and simply

losed boundary. The boundary value problem (BVP) investigated is a

hree-dimensional global steady state heat source located at the origin.

ther potential applications of this method are in ideal fluid flow and

lectrostatics. The problem domain examined for example purposes is a

ell-known computational model, the Stanford Bunny, located entirely

ithin the first octant and shown in Fig. 1 . The three-dimensional ap-
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roximation function under investigation is 

̂ ( 𝑥, 𝑦, 𝑧 ) = 

𝑛 ∑
𝑗=1 

𝑐 𝑗 
1 

𝑅 𝑗 ( 𝑃 𝑗 ) 
, (1)

here the c j ’s are real constants determined by collocation and the

 j ’s are the usual non-zero radial distance measures between the nodal

oints P j , now part of the optimization effort, and the evaluation point

 located at ( x, y, z ). Thus, 𝑅 𝑗 = 

√
( 𝑥 − 𝑥 𝑘 ) 2 + ( 𝑦 − 𝑦 𝑘 ) 2 + ( 𝑧 − 𝑧 𝑘 ) 2 . This

athematical formulation is a distinction from the other schema, in

hat rather than nodal point positions being defined by the end user

referentially, they are now being defined by optimization to reduce

omputational error. This paper uses radial basis functions to assess the

lacement of node locations and collocation point locations. Other basis

unctions may be used in the approximation as long as they satisfy the

overning PDE. 

There are a handful of different types of point definitions used in

omputational modeling. Since the goal is to computationally solve a
. Nelson), matthew.yuan@usma.edu (M. Yuan), grubaugh.kameron@aol.com 
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Fig. 1. Problem domain. 
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oundary value problem of a partial differential equation, then the ge-

metry of the problem boundary is defined as part of the modeling de-

cription. Additionally, boundary conditions of a specified state vari-

ble (Dirichlet boundary conditions) or flux type boundary conditions

re defined at various locations on the problem boundary. These loca-

ions where boundary conditions are specified are called “evaluation ”

oints, or equivalent terms. The evaluation points selected to be targets

or solving the computational equations are typically called “colloca-

ion ” points, or an equivalent. Other types of points are utilized in some

omputational models, particularly for purposes of visualization of mod-

ling outcomes. For example, computational fluid dynamic type models

ften use “probes ” where computational outcomes are displayed for as-

essment and depiction of modeling results. 

Typical node and collocation point placement is generally deter-

ined using one of two methodologies. The first inflates the problem

oundary and then places nodes uniformly along the expanded bound-

ry, as in [12] . The second is to place the nodes directly on the boundary

niformly. This paper examines the utility of using a “greedy ” algorithm

o place nodes and collocation points by comparing it against the two

ypical methodologies of placement. Nodal point and collocation point

ocations become additional variables within the approximation func-

ion to determine the optimal locations of each respectively. Since the

pproximation function is an entire function across the problem domain,

he maximum error is evaluable and used as the metric for utility. This

aper shows that the optimum solution determined using the greedy al-

orithm produces results with less error than traditional methods using

he same number of basis functions. 

. Literature review 

The method of fundamental solutions (MFS) [1] is a well-researched

opic due to its wide range of applications in solving partial differential

quations (PDEs) and the breadth of geometries suitable for the method.

he MFS is a simple, mesh-free way to solve boundary value problems

or PDEs. To use this method, a certain number of source points ex-

ernal to the problem geometry, and an equal number of corresponding

ollocation points on the problem boundary are selected. Then, a certain

umber of test points are chosen to construct an approximation [5] . The

 ∞ error at the test points is dependent upon the calculated coefficients

n the approximation function, which vary in relation to the placement

f the source points and the collocation points. An abundance of pre-

ious research addresses the selection of source points and collocation

oints as well as algorithms to generate such distributions. 
149 
Alves (2009) attempts to create a space-efficient method of select-

ng source points and collocation points in his renowned paper on the

election of source points in the method of fundamental solutions. To

ccomplish this, Alves first considers the geometric center of the prob-

em space and evenly distributes collocation points along the perimeter

f the problem geometry. Alves then extends source points beyond the

oundary in such a manner to be collinear with the collocation points

nd geometric center of the problem space. Many other algorithms ap-

ly a similar approach by first placing a circle or sphere, depending on

he dimension of the problem, around the problem geometry and then

venly distributing source points and collocation points along it. These

lgorithms follow the assumption that the even distribution of points

ill allow discovery of the best combination of points. This family of

lgorithms attempts to achieve the best result given a limited number

f nodes rather than minimize error. [2,9] 

Chen et al. developed two other algorithms to optimize the place-

ent of nodes in the MFS [10] . In the first, the algorithm searches for

n optimal radius to inflate the problem boundary out to, and then

laces nodes on that optimal radial expansion. The second algorithm

ses leave-one-out-cross-validation to compute the optimal boundary to

lace the node points. Chen’s Example 5 uses the same Stanford Bunny

eometry used in this paper [10] . 

Novel to other research in the field [11] , the algorithm presented in

his paper exhaustively searches a grid to find the optimal placement

or a certain number of nodes. The presented approach is not limited by

he selection of the problem geometry and has no fixed geometry to the

lacement of nodes. The only condition is that collocation points remain

n the boundary and source points are outside the domain. 

Since the MFS is being used, the PDE must be in the form of

aplace’s equation, where the problem domain is simply connected and

he boundary is simply closed. Thus, the problem becomes a Dirichlet

roblem, suitable for use of the MFS. 

Our problem, which satisfies such conditions, is a Cartesian three-

imensional space which contains a single, ideal steady-state heat source

oint located at the origin, defined as (0, 0, 0). Steady state heat trans-

ort conditions are assumed throughout the space and the problem do-

ain. Boundary conditions on the boundary, B , are defined by the global

otential function 𝑇 ( 𝑥, 𝑦, 𝑧, 𝑡 = ∞) = 

𝑈 

𝑅 
where U is a constant coefficient

nd R is the linear distance measured from the heat source point. 

The fundamental solution of the governing Laplace equation used

o create the approximation function is of the form 1/ r . Therefore, the

asis functions are of the form C j / R j . Linear combinations of such basis

unctions also satisfy the Laplace equation. Therefore, the approxima-

ion function used in this paper will be of the form 

𝑛 

𝑗=1 

𝐶 𝑗 

𝑅 𝑗 

here n is the number of source/collocation points and R j is the distance

o each source point. The C j values are determined by satisfying the

oundary condition at collocation points specified on B . 

The MFS is of importance in these computational efforts as it melds

ith the Boundary Element Methods (BEM), including the Complex

ariable Boundary Element Method (CVBEM) for computationally solv-

ng boundary value problems of partial differential equations. Conse-

uently, a focus on the MFS as conducted in this paper is similarly ad-

ressing the BEM and CVBEM modeling approaches. 

The CVBEM first appeared in the Journal of Numerical Methods in

ngineering in 1984 and has since become a modeling method used in

any disciplines, such as the geosciences, ideal fluid flow, heat transfer,

nd other engineering disciplines [7,8] . Throughout the last thirty-five

ears, the CVBEM has continued to be the subject of research, lead-

ng to advancements in the uses and efficiency of the method. Of spe-

ial interest among these advancements is the development of a multi-

imensional approach for this computational method, enabling the ap-

lication to case studies on three dimensional objects [6] . 
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The CVBEM offers an analytic approach to solving BVPs. THis

ethod is unique because the result is a continuous approximation func-

ion throughout the entire problem domain without the use of interpola-

ion [3] . The function contains both imaginary and real parts that satisfy

he Laplace equation, representing streamlines and the potential func-

ion, respectively. The CVBEM approximation function will represent

he potential at a location, z . The general equation for this function is 

̂
 ( 𝑧 ) = 

𝑛 ∑
𝑗=1 

𝑐 𝑗 𝑔 𝑗 ( 𝑧 ) 

here c j is the jth complex coefficient, g j ( z ) is the jth function in the set

f complex basis functions, and n is the number of functions used in the

VP. 

The algorithm described in this paper has the advantage of being

ndependent of geometries. To demonstrate this, we selected a complex

eometry - the Stanford bunny. We used a simplified 34,834 node ver-

ion of the well-known bunny centered at (2,2,2) to create a more com-

utationally intense and realistic model, depicted in Fig. 1 . 

. Computational candidate nodal points and collocation points 

Unlike traditional methods where the node locations, collocation

oint locations, and pairs are pre-selected, the optimization method re-

uires the evaluation of potential node and collocation point locations

or accuracy. In order to incorporate node and collocation positions as

egrees of freedom in the model, candidate pools for both are gener-

ted. We created a subspace in the first octant containing the problem

omain (the Stanford Bunny), but offset from the origin and axes. In or-

er to accomplish this, we translated the bunny data set off of the origin

nd constructed a cube with a user-specified distance between its faces

nd the extreme x,y and z coordinates of the bunny, shown in Fig. 1 . 

Using a grid of user-specified resolution, we discretized the cube sub-

pace to form a pool of candidate nodes. Then, we removed any points

ontained in the subspace that were on or inside the convex hull of the

unny from the pool of candidate nodes using the Inhull package [4] .

ig. 2 provides an illustration of the pool of candidate node positions. 

From a data set of 34,834 points that composed the surface of the

unny, we utilized every 300th point to form a pool of candidate collo-

ation points on the boundary. Fig. 3 depicts the candidate collocation

oints. 

After creating the candidate locations for possible node and colloca-

ion selection, implementation of the algorithm evaluates the utility of

andidate node pairing by measuring the summation of the computa-
150 
ional error at the evaluation points. Fig. 3 depicts the evaluation points

n the problem boundary. 

. Description of computational algorithm 

The computational algorithm described minimizes the error by se-

ecting node-collocation point pairs with the least L ∞ error at the eval-

ation points. 

Given a problem geometry, domain, and defined boundary condi-

ions, the algorithm generates a candidate pool for possible nodal and

ollocation points, as described in the above section. The number of

ode-collocation point pairs in the model is also input. 

The algorithm for error minimization consists of three steps: 

Step 1. Approximation function generation. After selecting one

source point outside the problem domain and one collocation

point on the problem boundary, the error of the approximation

function is set at zero at the point on the boundary. Then, the

coefficients to the approximation function are calculated. 

Step 2. Test point error assessment. The algorithm then calculates the

approximation function value and boundary function values at all

of the evaluation points. Since the evaluation points are located

on the problem boundary, the boundary condition functions are

guaranteed to be defined. Then, the error is calculated by taking

the absolute value of the difference between the two values. 

Step 3: Collocation and source pair selection. After individual error is

calculated for each evaluation point, the max error at each evalu-

ation point is recorded. This method was used because it directly

reflects the magnitude of local error at each test point, and, by

minimizing this value, local maximum error is also guaranteed

to decrease. After calculating the max error for each collocation-

source point pair, the algorithm selects the pair with the lowest

value and adds it to the approximation function. These points are

eliminated from their respective candidate pools and included in

any further approximations with more nodes. 

Steps 1–3 are repeated for each node used in an approximation. For

each additional node calculated, the approximation function will

have a term added to it. 

For each iteration of steps 1–3, the coefficients of the approximation

unction are determined using linsolve (), which runs in O ( n 3 ) time. The

 ∞ error is calculated for each evaluation point, which takes O ( C ) time,

ith C being the number of evaluation points used. Finding the L ∞ norm

lso takes O ( C ) time. Therefore, each node-collocation point pair has a
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Table 1 

Optimal nodes and collocation points for approximation with 

𝑛 = {1 , 2 , …6} . 

n Node Collocation Point L ∞ Error 

1 (1.606,2.324,4.159) (3.221,4.633,7.237) 0.01449 

2 (7.606,7.324,7.660) (5.629,4.460,7.311)) 0.00538 

3 (7.106, 6.824, 7.659) (3.520, 5.658, 7.997) 0.00334 

4 (2.606, 3.824, 5.159) (4.085, 4.148, 5.698) 0.00222 

5 (3.106, 3.324, 6.160) (4.814, 4.010, 5.788) 0.00185 

6 (3.106, 4.324, 5.660) (4.028, 5.201, 6.095) 0.00161 

l  

p
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t

un-time of O ( n 3 ). The process is repeated for each pair. Assuming there

re a candidates each in the nodal and collocations point pool, there

re 
(𝑎 
2 

)
= 

𝑎 ( 𝑎 −1) 
2 possible pairs to examine. Overall, this means that the

un-time for each iteration is O ( n 3 a 2 ). 

For an n -node model, there will be n iterations of steps 1–3. Though

ach iteration alters the approximation function and candidate pools,

he impact on the theoretical run-time is minimal. Therefore, the overall

un-time of the algorithm is O ( n 3 a 2 ). When the problem geometry is

xed, the collocation and nodal point pools are fixed and a becomes a

onstant. In this case, the run-time is O ( n 3 ). 

. Example problem: heat source at the origin 

To demonstrate the algorithm, we examined the following heat

ource problem. A source emits heat uniformly and can be modeled by

 ( 𝑥, 𝑦, 𝑧 ) = 

ℎ √ 

( 𝑥 − 𝑥 𝑗 ) 2 + ( 𝑦 − 𝑦 𝑗 ) 2 + ( 𝑧 − 𝑧 𝑗 ) 2 
(2)

here h is the constant heat source strength defined at source location

 x j , y j , z j ). For this problem, the heat source has strength ℎ = 1 and is
5
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he iteration a source was selected. 

151 
ocated at the origin (0, 0, 0). Thus, the potential function is to be ap-

roximated by 

 ( 𝑥, 𝑦, 𝑧 ) = 

1 √
𝑥 2 + 𝑦 2 + 𝑧 2 

. (3)

The example problem domain used to test the algorithm is the Stan-

ord Bunny model, shifted and scaled into the first octant. The selected

roblem domain consisted of 34,834 points, yielding 117 evenly spaced

oints chosen as candidate collocation points and a different 117 points

sed as evaluation points. The pool of candidate source points was gen-

rated by finding the minimum and maximum x, y , and z coordinates

n the boundary of the bunny and then drawing a box of a set distance

way from the most extreme points and filling that box with a fine mesh.

he resulting pool contained 1786 candidate sources. Fig. 4 displays the

rue value of the potential on the surface of the bunny. 

The step-wise greedy algorithm minimized computational error.

he maximum error decreased exponentially with each additional

ollocation-source pair, depicted in Fig. 5 . The algorithm chose points

hat are not constrained to a sphere or expanded bunny geometry around

he problem domain, which are the typical methods used to generate

ource point locations. MATLAB’s linsolve() command did not encounter

ny singular or badly-conditioned matrices while in this particular

roblem. 

With the node locations in Table 1 and the coefficients in Table 2 ,

he approximation function can be described completely. For 𝑛 = 6 , the

pproximation function of f is: 

( 𝑥, 𝑦, 𝑧 ) = 

1 √
𝑥 2 + 𝑦 2 + 𝑧 2 

≈ 𝑓 ( 𝑥, 𝑦, 𝑧 ) 

= 

0 . 5069 √
( 𝑥 − 1 . 606) 2 + ( 𝑦 − 2 . 324) 2 + ( 𝑧 − 4 . 160) 2 
86
6

4 4
2
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(Right) L ∞ error of approximation when points are placed on a sphere around the problem domain. 

Table 2 

Coefficients of corresponding node with 𝑛 = {1 , 2 , …6} . Note that 𝐶 𝑖 ( 𝑛 = 
𝑗) ≠ 𝐶 𝑖 ( 𝑛 = 𝑗 + 1) . Corresponding nodes in Table 1 . 

n C 1 C 2 C 3 C 4 C 5 C 6 

1 0.4547 

2 0.3652 0.1106 

3 0.3112 0.5840 − 0.3528 

4 0.4028 0.5026 − 0.3047 − 0.0392 

5 0.4646 0.3946 − 0.2332 − 0.0458 − 0.0118 

6 0.5069 0.3610 − 0.2120 − 0.0759 − 0.0151 0.0107 
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+ 

0 . 3610 √
( 𝑥 − 7 . 606) 2 + ( 𝑦 − 7 . 324) 2 + ( 𝑧 − 7 . 660) 2 

+ 

−0 . 2120 √
( 𝑥 − 7 . 106) 2 + ( 𝑦 − 6 . 824) 2 + ( 𝑧 − 7 . 660) 2 

+ 

−0 . 0759 √
( 𝑥 − 2 . 606) 2 + ( 𝑦 − 3 . 824) 2 + ( 𝑧 − 5 . 160) 2 

+ 

−0 . 0151 √
( 𝑥 − 3 . 106) 2 + ( 𝑦 − 3 . 324) 2 + ( 𝑧 − 6 . 160) 2 

+ 

0 . 0107 √
( 𝑥 − 3 . 106) 2 + ( 𝑦 − 4 . 324) 2 + ( 𝑧 − 5 . 660) 2 

(4)

. Discussion of computational results 

Previous research in MFS has typically placed the nodes in a fixed

eometry around the problem domain. Usually the geometry is either

n n -sphere or an expansion of the problem domain. This method out-

erforms the greedy method in terms of computational time ( O ( n ) com-

ared to O ( n 3 a 2 )) but under-performs in terms of error reduction. To

emonstrate this, we evaluated the same problem geometry and back-

round function using a fixed sphere geometry around the bunny with

 = 6 . The surface error on the bunny using either method can be seen in

ig. 6 . It is worth noting that since the background function and the ap-

roximation function are both potential functions, the maximum error

s also a potential function. 

The boundary L ∞ error is optimized in both methods when solving

or the coefficients; however, only the greedy method spends the extra

omputational effort to optimize the locations of the nodes and colloca-
152 
ion points. This computational effort increases run-time for 𝑛 = 6 from

s to 80s (Dell Latitude, i3 core) when the source and collocation pools

re 1786 points and 117 points respectively for the greedy method. 

With the same source and collocation pools as above, the error as n

ncreases from 1 to 6 can be seen in Fig. 7 . The greedy algorithm has

he same error at 𝑛 = 3 as the traditional algorithm at 𝑛 = 6 . 
Reducing the required number of nodes at the cost of increased run-

ime is attractive for certain kinds of problems. For real-world applica-

ions, this means reducing the amount of sensors (nodes) required to

et a reading within a selected error tolerance. Computationally, matrix

olvers for poorly conditioned problems are limited by the size of the

atrix. Having fewer nodes, and thus a smaller matrix of coefficients,

llows for better approximation of these poorly conditioned problems. 

Finally, with the traditional fixed geometry, error stopping criteria

s programmatically difficult. If the error is too high for a certain n ,

he fixed geometry must be changed to reduce the error. Stopping cri-

eria for the greedy algorithm do not require any changing of the ge-

metry; new sources can be added continuously until the error is below

olerance. 
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. Topics for future research 

The examined algorithm tests all candidate locations and results in a

ong run-time for problems with large candidate pools. Future research

ay focus on implementing a methodology that excludes candidate lo-

ations based on the maximum error associated with the candidate’s

ne node approximation error. Exploration into using the gradient be-

ween potentials as rejection criteria could be informative as well, as

ould using the gradients of the approximation function to develop vec-

or trajectories and associated streamlines. Additionally, follow-on lines

f research pertaining directly to MFS node and collocation optimiza-

ion could involve strategically designing both sets of points’ candidate

ools to further reduce run-time. Additionally, the resolution, or size, of

he grids that compose the node and collocation point candidate pools

ave a significant effect on computation time for the model. Further in-

estigation into the density of both pools, along with the distribution of

odes is warranted. It is worth noting that randomly scattering nodes

ith a uniform distribution may be a more computationally-efficient

ethod of generating the candidate node pool. The increase in com-

utational efficiency caused by optimizing node and collocation point

ositions allows for applying the CVBEM to a 3-dimensional problem.

nother useful path for the optimization of C j and P j would be to employ

he Hilbert space of the L 2 error. 
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