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1 Massachusetts Institute of Technology 2 United States Military Academy 3 Independent Researcher

Abstract
Many applied problems in geoscience involve the use of computer models to simulate phenomena of interest. These sim-

ulations often entail approximating the solution to a boundary value problem (BVP) of a partial differential equation (PDE).
Research seeking to improve computational methods for approximating the solutions to these BVPs continues with advances
providing increased computational accuracy and reduced computational burden. Of recent interest in numerical methods for
PDEs are the techniques generally classified as mesh reduction methods. Many of these numerical methods require the user
to locate computational nodes (alternatively, source points) as part of the modeling process. For these methods, the accuracy
of the resulting BVP model depends on the selected locations of the computational nodes. Consequently, procedures for lo-
cating these computational nodes so that the resulting BVP model is sufficiently accurate are of great importance. This poster
summarizes our group’s recent progress in developing a procedure for locating the computational nodes that are commonly
encountered in the computer implementation of mesh reduction numerical methods for PDEs.

Introduction
Since mesh creation is often the most time-consuming part of modeling PDEs when using the popular domain-
based approaches such as the finite element and finite difference methods, increasing the viability of mesh
reduction methods has been the subject of much recent research. However, many of the mesh reduction nu-
merical methods that have been developed incorporate the use of computational nodes that must be located
during the modeling process. Since, the accuracy of the resulting BVP model depends on the locations of
the computational nodes it is important to have a procedure for determining suitable locations for the nodes.
In this work we describe a Node Positioning Algorithm (NPA) that includes our new refinement procedure,
which allows for the locations of previously-located nodes to be updated if there exists a new location for the
node that would result in a BVP model with greater accuracy. Although the NPA that is proposed in this work
could be applied to any of the PDE mesh reduction methods that require the modeler to specify the locations
of computational nodes, we will demonstrate the NPA by applying it to a Complex Variable Boundary Element
Method (CVBEM) model of potential flow over a half-cylinder.

The New Node Positioning Algorithm
The new refinement procedure is a useful addition to recent NPA efforts due to its monotonic improvement of
the PDE method’s approximation function since upon each application of the refinement procedure, either (i)
the current model is kept so that there is no change in overall approximation error, or (ii) a previously-located
node is exchanged for a node in a different location so as to reduce the overall approximation error. Therefore,
with each application of the refinement procedure, the approximation error of the model either stays the same
or decreases, but never increases.

NPA ALGORITHM APPLIED TO THE CVBEM:
1. Input n, which is the number of terms that will be used in the linear combination of the approximation function.

2. Create a set of candidate computational nodes and a set of candidate collocation points. The set of candidate computational nodes
must include at least n nodes, and the set of candidate collocation points must include at least 2n points.

3. Initialize: search all combinations of 1 computational node and 2 collocation points for the 1-node model resulting in the least
maximum error.

4. Repeat (a)-(e) for k = 2, ..., n: construct the CVBEM model one node at a time by repeating the following steps.

(a) Use the current CVBEM model to compute the error function along the boundary.
(b) Determine the locations of the local maxima of the error function.
(c) Place one new collocation point at the each of the two maxima of the error function with greatest magnitude. The model now

has k − 1 nodes and 2k collocation points. See Figure 1 for a depiction typical depiction of the error function mapped from the
boundary of the problem domain onto a line segment. The two maxima of interest of the error are shown as blue dots in the
figure.

(d) Test all of the candidate computational nodes to see which additional node will result in the CVBEM model of least maximum
error. Add the new computational node to the model. The model now has k computational nodes and 2k collocation points.

(e) Repeat for j = 1, ...,m1 × k: where m1 is the number of iterations of refinement
i. Let p = mod(j, k). If p = 0, then replace p with p ← k. p is the index of the computational node whose location is being

refined.
ii. Remove the pth-selected node from the CVBEM model. The model now has k − 1 nodes and 2k collocation points.

iii. Test all of the candidate computational nodes to see which node will result in the CVBEM model of least maximum error.
Add the new computational node to the model replacing the pth-selected node that was previously removed. The model now
has k computational nodes and 2k collocation points.

5. Repeat for j = 1, ...,m2 × k: where m2 is the number of iterations of refinement

(a) Let p = mod(j, k). If p = 0, then replace p with p ← k. p is the index of the computational node whose location is being
refined.

(b) Remove the pth-selected node from the CVBEM model. The model now has k − 1 nodes and 2k collocation points.
(c) Test all of the candidate computational nodes to see which node will result in the CVBEM model of least maximum error. Add

the new computational node to the model replacing the pth-selected node that was previously removed. The model now has k
computational nodes and 2k collocation points.

In the algorithm above, the refinement procedure
(written in green text) is implemented twice: once
at Part (e) of Step 4, and a second time at Step 5.
The implementation that occurs at Part (e) of Step
4 refines the locations of the computational nodes
as each new node is added to the model. The im-
plementation that occurs at Step 5 only refines the
locations of the computational nodes after all of
the nodes have been selected. For a faster imple-
mentation, it is possible to forgo the Refinement
Procedure at Part (e) of Step 4 and only do the
refinement after having selected all of the nodes
without using the Refinement Procedure. When
Part (e) of Step 4 is omitted, the BVP model is
obtained more quickly, however, usually at a cost
to the accuracy of the model. However, only ap-
plying the refinement procedure at Step 5 is better
than not applying it at all.

Figure 1: Typical plot of the CVBEM error function along
the boundary of a sample problem domain. In this figure,
the problem boundary has been mapped using a bijection
onto the line [0, 6]. The two local maxima of the error func-
tion with greatest magnitude are depicted as blue dots. The
two new collocation points would be located at the points
on the problem boundary corresponding to the locations of
these two maxima.

Visualization of The Refinement Procedure
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Figure 2: Steps (a)-(h) of
an example application of
the refinement procedure.

Example Problem: Potential Flow Over a Half-Cylinder
Problem Statement:

Domain: Ω = {(x, y) : −10 ≤ x ≤ 10, 0 ≤ y ≤ 20, and x2 + y2 ≥ 1}
PDE:∇2ψ = 0

Boundary Conditions: ψ(x, y) = =[ω(z)], (x, y) ∈ ∂Ω

Number of Candidate Computational Nodes: 1, 500

Number of Candidate Collocation Points: 20, 000

The exact representation of the velocity potential for this problem is given by

ω(z) = z + 1/z, =[z] ≥ 0. (1)

Since the exact solution is analytic everywhere except for z = 0, the real and
imaginary parts of ω are harmonic functions in C \ {0} and thus harmonic
throughout Ω. Consequently, the CVBEM is well-suited for modeling the ve-
locity potential of this example problem. Moreover, the availability of the exact
solution for this flow situation, as given in Equation (1), allows for a precise
description of the computational error of the CVBEM model, which is useful
for the purpose of assessing the efficacy of the new NPA.
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Figure 3: Contour plot of the analytic
solution for potential flow over a half-
cylinder. The exact solution is ω(z) =
z + 1/z, =[z] ≥ 0. The depicted
flow net is obtained by plotting contours
(level curves) of the real and imaginary
parts of ω. This example problem con-
tains two stagnation points, located at
(−1, 0) and (1, 0), respectively, at which
the curvature of the solution is most ex-
treme.

Graphical Results
In the figures below, emphasis is given to the north pole of the half-cylinder, which is located at (0, 1), as well
as to the two stagnation points, located at (−1, 0) and (1, 0), respectively, where the curvature of the local flow
situations are most extreme. The high-precision computational modeling that is required in order to provide
a satisfactory approximation of this flow is the reason that this problem has been selected to demonstrate the
application of the NPA to the CVBEM.

Figure 4: Magnified view of the CVBEM
approximation of the flow regime depicted
near the obstacle. The curvature of the so-
lution increases near the north pole of the
half-cylinder. Besides the stagnation points,
the north pole is the location of greatest cur-
vature in the exact solution, which makes it
difficult to model.

Figure 5: Left stagnation point Figure 6: Right stagnation point
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Figure 7: Exact and approximate flow nets near the stagnation points where the curvature of the solution is most extreme.

Comparison Between Unrefined and Refined Implementations
Table 1 contains the results from three different CVBEM implementations. For each of the three methods,
maximum error results are reported for several different model sizes with respect to the number of degrees of
freedom (dof) used in obtaining the CVBEM approximation function. The final column of Table 1 shows the
order of magnitude of the improvement in the accuracy of the CVBEM approximation function obtained by
applying the refinement procedure compared to when no refinement is used.

Number Number Max. Error for Max. Error for Max. Error for Order of
of Basis of dof for Optimized Optimized Magnitude

Functions (2n) Un-optimized Method Method of
(n) Method (No Refinement) (with Refinement) Improvement
1 2 1.946105e+01 1.657752e+00 1.657752e+00 0
2 4 1.204797e+00 3.033696e+00 1.876661e+00 0
3 6 7.818511e-01 1.585200e+00 1.081110e+00 0
4 8 4.722863e+00 1.212144e+00 1.178229e+00 0
5 10 9.561156e-01 1.113585e+00 4.158998e-01 0

10 20 9.942122e-01 1.446775e-01 3.832625e-03 1
15 30 9.959928e-01 7.673386e-02 4.720970e-05 3
20 40 9.961047e-01 2.453100e-03 5.638322e-07 3
25 50 9.957117e-01 1.073772e-03 6.275395e-08 4
30 60 9.957136e-01 2.954499e-05 1.591035e-08 3
35 70 9.957140e-01 1.861172e-06 4.140663e-09 2

Table 1: Maximum error results for variously-sized CVBEM models. The CVBEM models that are considered are an un-optimized
CVBEM model, an optimized CVBEM model without refinement, and an optimized CVBEM model with refinement. The word
“optimized” means that an NPA was used to locate the computational nodes of the CVBEM model.

Conclusions
This poster reports on a new NPA for locating computational nodes in mesh reduction methods for PDEs. The
novelty of this research is with respect to the development of the refinement procedure as described above,
which allows for the relocation of already-located nodes if making a change would result in a BVP model with
less error. This procedure is an important addition to recent NPA research due to its monotonic improvement
of the BVP model to which it is applied.

To demonstrate this new algorithm, the NPA is applied to a CVBEM model of potential flow over a half-
cylinder. This is a useful demonstration problem involving the computational difficulty of modeling the poten-
tial flow in the vicinity of two stagnation points. Additionally, the fact that the exact solution is known allows
for the development of a precise description of the computational error resulting from the application of the
NPA to the CVBEM model. Maximum error results are tabulated for three different node positioning schemes,
including the NPA at hand.
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