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Abstract: A database joining individual earthen dam breach failure studies is assembled and reanalyzed across all aggregate observations.
Conventional regression methods are employed along with newer predictive approaches to estimating peak discharges resulting from
an earthen dam failure. Goodness of fit is quantified through relative standard error and relative bias. These measures are computed and
presented for previous predictive equations. Numerical optimization techniques are used to calibrate power law functions of one, two, and
three predictors to estimate peak discharge from the aggregate database. Findings show that equations calibrated from the aggregate database
have better goodness-of-fit metrics than those determined from their earlier, individual data sets. Improvement in relative standard error varies
from essentially zero to as much as 50%. Two similar innovative techniques are applied to the aggregate database: region of influence (ROI)
and k-nearest neighbor (kNN). Both of these approaches identify a subset of most similar observations from the database, given a specific test
location. The ROI approach performs poorly in prediction mode, uniformly producing relative standard errors that are greater than the origi-
nally calibrated equations and that often exceed 100% of the standard deviation of the observations. Smaller relative standard errors are
obtained as ROI size increases, contrary to the spirit of this approach. In contrast, the kNN approach performs well, with best results obtained
for a simple numerical average of the k nearest observations. The size of the optimum k neighborhood varied from 3 to 29, with 12 being the
median value among the cases examined. Regression equation calibration via logarithmic transformation is briefly explored, and the need to
limit predictions to the test space within the convex hull of the observations is discussed. DOI: 10.1061/(ASCE)HE.1943-5584.0001740.
© 2018 American Society of Civil Engineers.

Introduction

Dam breach modeling is challenging. Efforts to predict flood mag-
nitudes resulting from breaches are limited by available failure data
and by the myriad causes of such failures. The result is that data sets
are sparse and observed failures may vary considerably in their
behavior because of differing failure mechanics. The challenge to
engineers and scientists is to use statistical approaches to make ef-
fective estimates from such a limited set of data. The value of such
approaches is to provide planning-level estimates of flood magni-
tudes so that flood inundation extent can be modeled and available
to emergency managers.

Historically, regression has served as a favored tool used to
generate statistically based estimates from observational data sets.
This work employs multiple studies of earthen dam failure, ag-
gregating their individual data sets and examining their predictive
equations. We will examine goodness-of-fit measures and equa-
tion calibration methods for existing equations and new equations
calibrated from the collective, assembled database. One alterna-
tive approach to estimating dam failure peak discharges is by
physics-based, hydraulic-modeling efforts such as those by the

National Weather Service, producing such models as DAMBRK
(Fread 1988) and FLDWAV (Fread and Lewis 1988). This ap-
proach is well grounded with physically observable and measure-
able characteristics associated with the dam–channel system.
However, compared to regression methods, this approach is much
more data intensive, requiring significant user expertise, and may
be vulnerable to numerical instabilities. At the other end of the
spectrum, alternative statistical approaches have been applied to
estimate dam failure peak discharges. A good example is the use
of artificial neural networks (e.g., Pektas and Erdik 2014) to ad-
dress this problem. This approach features flexibility in combin-
ing multiple functions to reproduce observations gleaned from a
training subset of some overall data set. Performance is then
validated based on estimates of observations from a sequestered
testing subset. This approach can work well, but the opacity and
lack of physical interpretation of the developed results is a
weakness.

Traditional regression analysis is not without its limitations,
which include assumed independence of predictor variables, homo-
scedasticity, and the absence of outliers. This study will explore
newer approaches that manage or avoid such limitations to esti-
mate flood peaks resulting from earthen dam failures. Specifically,
the region of influence (ROI) approach (Burn 1990; Tasker et al.
1996) of regression equation calibration and some k-nearest neigh-
bor (kNN) algorithms (Cover and Hart 1967; Altman 1992) will be
explored as they apply to the problem of flood peak estimation from
dam failures.

While methods and measures are essential to extending the
science, practical application of the database to estimate flood
peaks is an important goal. The objective here is to provide an ex-
ample illustration of the application of the techniques examined in
this paper, both traditional and innovative, for comparison so that
accuracy and bias can be assessed.
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Background

Linear regression performed via a least-squares technique is among
the most commonly used approaches to estimatung a criterion var-
iable, y, given one or more predictor variables, xj

ŷ ¼ c0 þ c1 · x1 þ c2 · x2þ · · · ð1Þ

where ŷ = prediction (best estimate) of y for a given set of predic-
tors fx1; x2; : : : g. The calibration coefficients, fc0; c1; c2; : : : g are
determined by minimizing the function F, which is simply the sum
of the squared prediction errors across n observations:

minðFÞ ¼
Xn
i¼1

ðŷi − yiÞ2 ð2Þ

A prediction made using Eq. (1), or variations of this equation
discussed subsequently, are most dependable when the specific
values of each of the predictor variables are within the range of
observations from which the equation was calibrated. Predictions
made outside of this range amount to extrapolations from the train-
ing data set, and such predictions suffer from the much greater
uncertainty associated with extrapolation. When only one predictor
variable is used, the simple minimum and maximum of observa-
tions of this variable define the bounds over which the equation
is most safely applied. When two predictor variables appear in
Eq. (1), the graphed set of pairs of predictor variables can be en-
closed by a minimum bounding envelope defined by a small subset
of these predictors. The term convex hull is used to describe this
polygonal envelope. The concept of the convex hull is a strictly
mathematical construct; however, it has been applied in multiple
contexts, including civil engineering applications (e.g., Laton
et al. 2007).

Fig. 1 illustrates the concept of a convex hull in the context of
the observations of Vw and Hw (defined and described in the next
section). The hull shown here is graphed in log-log format because
of the wide range of orders of magnitude of especially Vw. The
determination of the hull boundaries is dependent on whether it
is determined in the arithmetic or log space. The solid line hull
shown in Fig. 1 was determined in the log space and is clearly
a convex polygon (all angles less than 180°). The convex hull
determined in the arithmetic space is generally different than its
log-space counterpart, as shown by the dashed lines in Fig. 1. The
arithmetic space–determined hull, in fact, results in a polygon that
is not strictly convex at all vertices (e.g., see vertex “A”) when
graphed in the log space. The arithmetic space–determined hull
covers a more restrictive area than the log space–determined hull,
as will be discussed subsequently. Returning to the discussion of
hull dimensionality, if three (or more) predictors are used in Eq. (1),
the convex hull becomes three (or more) dimensional, but the
same concept as for one or two dimensions still holds; a prediction
made based on a set of observations that lies outside the hull is
an extrapolation, and a prediction should be made with caution,
if at all.

In addition to the strict convex hull bounds, the quality and de-
pendability of a calibrated regression equation requires a sufficient
number of available observations. There are various rules of
thumb (e.g., Green 1991; Harrell 2001) that a minimum of 10
to 20 observations are needed per predictor variable when doing
regression analyses. The data set assembled here varies from as
few as 17 predictor observations to more than 100 observations.
Predictive power can be expected from this data set, but it is also
understood that this data set is sparse—requiring appropriate atten-
tion to the quality of any calibrated equations and demanding in-
novative alternative approaches to extract as much information as
possible from the data set.

One innovative approach to the traditional linear regression just
described is to draw selective subsets from the collected database.
This approach is referred to as the region of influence (ROI) ap-
proach (Burn 1990; Tasker et al. 1996). The ROI approach is sim-
ilar in spirit to other machine learning algorithms such as k-nearest
neighbor approaches (e.g., Cover and Hart 1967; Altman 1992) and
to the lag distance to the sill in geostatistical Kriging (Duricic et al.
2013). The common thread to ROI and other machine learning al-
gorithms is the focus on selective sampling from the overall data set
based on a similarity of selected observations to the test “location”
where a prediction is to be made. The assumption is that existing
observations that are most similar to the test location are the most
valuable for prediction at the test location. Thus, this approach
draws from the overall data set of observations only those points
that are “closest” to the predictor(s) at the test location. The regres-
sion equation calibrated from this subset of closest points may be
superior to an equation calibrated from the entire data set.

Similarity or closeness of an observation to the test location is de-
termined by calculating the normalized “distance” (Dj) between the
test location characteristics ( ~P) and those at point, j, in the data set:

Dj ¼
��

logð ~P1Þ − logðx1;jÞ
σlogðx1Þ

�2

þ
�
logð ~P2Þ − logðx2;jÞ

σlogðx2Þ

�2

þ · · · þ
�
logð ~PnÞ − logðxn;jÞ

σlogðxnÞ

�2�1=2
ð3Þ

where xi;j = value of observed characteristic i at location j. The standard deviation of the logarithms of characteristic i for the entire
observation data set is σlogðxiÞ, which serves to normalize each of the individual differences between the test location characteristic and

Fig. 1. Convex hull for peak discharge predictors Vw and Hw in log
(solid line) and arithmetic (dashed line) spaces. Dashed ellipse shows
region of influence for observations closest to to test point at
Vw ¼ 910,000 m3, Hw ¼ 12.2 m.
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the observation characteristic. The overall mathematical form of
Eq. (3) is that of a Euclidean distance equation from geometry, so
Dj is often referred to as the distance of observation j from the test
location.

The ROI approach generates a tailored regression. The subset of
observations with Dj determined in Eq. (3) that are less than some
critical distance Dc are those observations that are to be used in the
regression analysis. Although not strictly necessary, the same char-
acteristics x1 · xn used to determine Euclidean distance are also
generally used as predictors from which the regression equation is
calibrated. The ROI approach does not produce a single static re-
gression equation that applies in all cases; rather, it is a dynamic
approach that produces a regression equation that is unique to the
test location and dependent on the closeness, Dj, of predictor var-
iable observations in the overall data set.

Fig. 1 illustrates the ROI concept. The point x is arbitrarily
chosen here to represent a hypothetical test location’s characteris-
tics. The scatter of observations shown in this figure has been fil-
tered so that the nearest 20 points to the test location are graphed
using a “+” marker, while those further away are graphed using a
“o” marker. The dashed ellipse shows the region within a critical
distance, Dc, used to separate the scatter into these distinct groups.

The kNN approach encompasses a broad class of estimation
techniques. The common thread in each kNN variant is the use
of a distance calculation [such as defined by Eq. (3)]. This distance
calculation helps to define a region or neighborhood. The kNN ap-
proach differs from ROI in that the estimation at the test location
that follows does not generally encompass regression as discussed
earlier in Eqs. (1) and (2). The estimation often takes the form of
a simple or weighted average from among observations within the
selected neighborhood. Two weighted average variants of the kNN
approach are examined here.

Regardless of the approach employed to make a prediction, the
quality of that prediction is quantified through two goodness-of-fit
metrics: relative standard error and bias. The foregoing discussion
was written in terms of a generic criterion variable, y. In the remain-
der of this work, formulas are presented in terms of the specific
application of this paper, the prediction of peak discharges from
dam failures, Q. The relative standard error, Se=SQ, is

Se
SQ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n−p−1

P
n
i¼1 ðQ̂i −QiÞ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n−1
P

n
i¼1 ðQ̄ −QiÞ2

q ð4Þ

where Qi = observed peak discharge; Q̂i= predicted peak dis-
charge; Q̄ = mean of all observed peak discharges; n = number
of observations; and p = number of predictors used in the predictive
approach. The denominator of Eq. (4) is simply the standard
deviation of the observed flood peaks, and the numerator is the
standard error of the predicted flood peaks. The relative standard
error is, therefore, simply the absolute standard error normalized by
the standard deviation. Because of the squared terms in both the
numerator and denominator of Eq. (4), the relative standard error
must be positive. In general, the relative standard error is a value
between 0 and 1, its magnitude reflecting the improvement in pre-
dictive power produced by the peak flow equation being examined
compared to simply making a prediction based on the mean of the
observations. The closer to 0 the standard error is, the stronger the
performance of the predictive equation. The relative standard error
can exceed 1, which would be indicative of poor performance by
the equation being examined.

The relative bias, B, is

B ¼
1
n

P
n
i¼1ðQ̂i −QiÞ
1
n

P
n
i¼1 Qi

ð5Þ

Relative bias is a measure of the cumulative sum of all errors,
normalized by the mean of the observations. In contrast to the rel-
ative standard error, individual terms of the summation in Eq. (5)
can be positive or negative, so relative bias can be either positive or
negative. A convenient conceptualization of relative bias comes
from observing that two errors of equal and opposite signs cancel
one another and collectively contribute a net zero to the mean bias.
Relative bias is ideally zero and is, by definition, zero in the context
of linear regression.

Data and Methods

Database

Efforts to quantify peak flood flows resulting from dam breaches
extend well into the past. The earliest dam failure in the assembled
database is from 1864 in Bradfield, UK, and the average year of
failure is approximately 1950. The database assembled (appendix)
contains observations of flood peaks from numerous sources
resulting from earthen dam failures quantified in previous studies.
Table 1 presents a summary of the database characteristics in terms

Table 1. Summary of dam breach database characteristics

Variable(s) Description Unit
Number of
observations Variable mean, median Variable range

Standard deviation of
Q for subset of database

Q Failure peak discharge m3=s 120 3,850; 667 1.3 to 78,100 10,400
Hd Height of dam m 78 20.2, 14.3 1.5 to 93 12,600
Hw Height above breach invert m 103 14.2, 9.6 1.37 to 77.4 11,200
L Length m 19 431, 238 4.9 to 2000 18,700
S Reservoir storage m3 70 4.12 × 107, 1.11 × 107 42,000 to 6.50 × 108 13,100
Vw Volume stored above breach invert m3 105 2.62 × 107, 1.32 × 106 3,700 to 6.6 × 108 11,100
W Average width m 31 53.0, 40.5 9.63 to 250 11,600
Vw, Hw See above for description and units 103 Vw: 2.74 × 107, 1.18 × 106 Vw: 3,700 to 6.60 × 108 11,200

Hw: 14.3, 10.1 Hw: 1.37 to 77.4
Vw, Hw, L See above for description and units 19 Vw: 5.02 × 107, 5.39 × 106 Vw: 4,770 to 6.08 × 108 19,600

Hw: 16.3, 13.5 Hw: 1.5 to 47.9
L: 454, 238 L: 4.9 to 2000

Vw, Hw, W See above for description and units 31 Vw: 4.23 × 107, 3.87 × 106 Vw: 13,300 to 6.60 × 108 11,600
Hw: 15.6, 10.8 Hw: 1.68 to 77.4
W: 51.1, 37.3 W: 9.63 to 250
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of the variables quantified; the number of observations of each
variable; the mean, median, and range of observation values for
each variable; and the standard deviation of the flood peaks asso-
ciated with observations of each predictor variable. This latter
quantity is provided for context as it indicates the denominator
value in Eq. (4).

Numerous efforts have been made to predict earthen dam flood
failure peak flows using a regression model approach. Table 2 sum-
marizes a subset of such efforts organized by predictor variable(s)
used. Table 2 also reports the relative standard error and relative
bias. Since the subset of flood values, Q, associated with each re-
gression equation is somewhat different, a direct comparison of
goodness-of-fit measures is not strictly possible, although there is
considerable overlap between these subsets. Another matter to
clarify is that the “Relevant studies: n” entry in Table 2 shows
the number of observations that served to calibrate the equations
provided in this table. The goodness-of-fit performance, however,
is quantified based on the overall set of observations shown in the
appendix.

Regression Calibration Method

As evidenced by the equations presented in Table 2, a power-law
formulation is, by far, the dominant mathematical modeling struc-
ture that has been used to predict flood flows caused by an earthen
dam failure. These formulations take the form

Q̂ ¼ c0 · x
c1
1 · xc22 : : : ð6Þ

where Q̂ denotes the model prediction of a flood flow, the set
of predictor variables is fx1; x2; : : : g, and the set of coeffi-
cients fc0; c1; c2; : : : g is calibrated to fit the observed data set,
analogously to the earlier discussion on the presentation of
Eqs. (1) and (2).

A common method for the calibration of power-law relation-
ships is to linearize them through a logarithmic transformation.
Taking the logarithm of both sides of Eq. (6)

logðQ̂Þ ¼ logðc0Þ þ c1 · logðx1Þ þ c2 · logðx2Þ þ · · · ð7Þ

which can be rewritten as

Y ¼ C0 þ c1 · X1 þ c2 · X2 þ · · · ð8Þ

where Y ¼ logðQ̂Þ, and the capitalized quantities are simply
the log-transformed version of the original quantities in Eq. (7).
Eq. (8) is the standard linear equation presented earlier as Eq. (1).

An alternative to the linearization described in Eqs. (7) and (8) is
to calibrate the cx values through nonlinear numerical optimization.
In this approach, an optimizer routine systematically varies the set
of cx values with the goal of minimizing the same objective func-
tion, F, presented earlier as Eq. (2). The two alternative methods to
calibrate the cx values in the power law expression yield different
sets of calibrated values, cx. The logarithmic linearization method
minimizes the differences between predicted and observed peak
discharges in the logarithmic space, while the numerical optimiza-
tion approach minimizes differences in the arithmetic space. The
term bias now becomes dependent on perspective. The logarithmic
transformed calibration will be unbiased (i.e., errors have zero
mean) in the logarithmic space but will be biased in the arithmetic
space. The numerically optimized calibration will be essentially un-
biased (a very small residual can result from this approach) in the
arithmetic space, but biased if examined in the logarithmic space.
Studies in the statistical sciences (e.g., Miller 1984), biological sci-
ences (e.g., Sprugel 1983; Xiao et al. 2011), and physical sciences
(e.g., Ferguson 1986; Delmas et al. 2015) have raised this issue.
Correction factors or other approaches have been suggested to re-
move the bias resulting from a logarithmic transform based on the
nature of the distribution of residuals.

In this work, the smallest relative standard error is valued as the
primary objective, and minimized bias as the secondary objective.
The rationale for this view is that model accuracy is paramount
(resulting in high importance placed on the standard error), and lack
of bias is also a desired outcome. Additionally, the arithmetic space
is used as the appropriate space in which to determine both the rel-
ative standard error and relative bias, since it is the peak discharges
that are ultimately of interest, not their logarithms. The reported
goodness-of-fit performance in Table 2 for each of the published
peak flow equations serves as a baseline against which other ap-
proaches examined here can be compared.

Results

New Power-Law Relationship Approach

For each regression equation presented in Table 2, numerical opti-
mization was employed as described earlier to calibrate a version of

Table 2. Goodness-of-fit characteristics for equations calibrated in previous studies and full data set regression equations calibrated in this study

Predictor(s) Relevant studies: n Equation Se=SQ Relative bias (m3=s)

Hd Singh and Snorrason (1982): 8 Q ¼ 13.4ðHdÞ1.89 0.994 0.145
This study: 78 Q ¼ 154ðHdÞ1.20 0.885 −0.00018

Hw Bureau of Reclamation (1982): 21 Q ¼ 19.13ðHwÞ1.85 0.762 0.0066
This study: 103 Q ¼ 41.0ðHwÞ1.63 0.758 0.00092

L Pierce et al. (2010): 14 Q ¼ 0.12ðLÞ1.79 1.23 0.470
This study: 19 Q ¼ 11.2ðLÞ1.09 0.782 0.0011

S Singh and Snorrason (1984): 8 Q ¼ 1.776ðSÞ0.47 0.819 −0.281
This study: 70 Q ¼ 0.345ðSÞ0.588 0.738 −0.0001

Vw, Hw MacDonald and Langridge-Monopolis I (1984): 23 Q ¼ 1.154ðVw · HwÞ0.412 0.767 −0.528
MacDonald and Langridge-Monopolis II (1984): 23 Q ¼ 3.85ðVw · HwÞ0.411 0.753 1.26
Froehlich (1995): 22 Q ¼ 0.607ðV0.295

w · H1.24
w Þ 0.691 −0.525

This study: 103 Q ¼ 0.640ðV0.392
w H0.866

w Þ 0.559 0.00021
Vw, Hw, L Pierce et al. (2010): 14 Q ¼ 0.012ðV0.493

w H1.205
w L0.226Þ 0.187 0.0449

This study: 17 Q ¼ 0.0338ðV0.512
w H1.08

w L0.0761Þ 0.0883 0.000012
Vw, Hw, W Pierce et al. (2010): 25 Q ¼ 0.863ðV0.335

w H1.833
w W−0.663Þ 0.422 −0.0796

This study: 31 Q ¼ 1.16ðV0.0419
w H1.89

w W0.389Þ 0.118 −0.0859
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these equations specific to the data set presented in the appendix.
Calibrated equations are shown in Table 2 along with their good-
ness-of-fit performance. Table 2 shows that the power-law model
relationships calibrated in this study are better in terms of both
Se=SQ and relative bias for all relationships examined. While this
is a good result, it is not a surprising result. The relationships found
here were calibrated, in most cases, from a larger data set than the
individual relationships also presented in Table 2. The previously
calibrated relationships did not have the benefit of the additional
observations used here and, thus, are operating in a predictive
mode, rather than calibration mode, for a subset of observations
used in the determination of the goodness-of-fit measures presented
in this table. In many cases, the Se=SQ values are greater than 0.7,
indicating that the calibrated regression model is unable to reduce
the standard error to less than 70% of the standard deviation of the
observations. This is reflective of the degree of variability in dam
failure peak discharges.

Region of Influence Approach

The ROI approach was explored in the context of the same predic-
tor variable equations as shown in Table 2. In all cases, numerical
optimization was used to calibrate the regression equations rather
than using the logarithmic transformation of Eq. (7). The ROI
approach was explored allowing the k neighborhood size to vary.
A rule of thumb of a minimum of 10 observations per predictor was
examined by allowing k to vary from the p (where p is the number
of predictor variables used) nearest neighbors up to the total num-
ber of observations, nobs, in the data set. The solid line in Fig. 2
shows the measure, Se=SQ, as a function of k. For the case con-
sidered in the figure, Q ¼ fðVw;HwÞ, as the neighborhood size
increases, the Se=SQ measure degrades rapidly, reaching a fairly
stable, approximately maximum value for k in the low 20s. When
k ¼ nobs, the ROI calibration simplifies to the straight traditional
regression approach quantified in Table 2.

On first examination, the ROI results point to using a smaller k
value to give the best predictive performance. The calculation of
Se=SQ is made by testing agreement at all nobs observations in
the data set. In practice, the application of the ROI technique at an
unknown (Vw, Hw) test location would not generally have the
benefit of a direct observation at D ¼ 0 in Eq. (3). To examine this
more typical predictive mode performance of the ROI approach, the
analysis algorithm was modified to omit observation, j, for which
Dj ¼ 0 from the selected subset for regression. The relationship of
Se=SQ is shown in Fig. 2 as the dashed line. There are two

important interpretations of these Se=SQ relationships with k:
(1) ROI performance is considerably poorer when used in a predic-
tive mode than is suggested by the calibration statistics; (2) predic-
tive mode performance favors larger, rather than smaller, k values
for calibration—going against the rationale of the ROI approach
that a smaller neighborhood near the test location should be sought
in a targeted regression. In the case shown in Fig. 2, predictive
mode (dashed line) performance seems to reach a best plateau
at around k ¼ 20–30 observations. As k continues to increase, fur-
ther gains in reduced Se=SQ are minimal. Thus, the longstanding
argument for using the ROI approach is contradicted by the illus-
trated regression relationship. Table 3 confirms that, for this dam
breach data set, similar performance of the ROI approach is ob-
served regardless of the predictor variable examined.

k-Nearest Neighbor Approach

The kNN approach draws on the same distance relationship,
Eq. (3), as the ROI approach. These approaches diverge at this
point, with ROI using conventional regression methods with the k
neighborhood subset. The kNN approach essentially seeks to gen-
erate a “surface” that describes the variation in the criterion variable
as a function of one or more varying predictor variables. A predic-
tive surface of Q̂ is calculated using a weighted average based on
the distances calculated using Eq. (3):

Q̂ ¼
P

k
j¼1

1
Dα

j
· QjP

k
j¼1

1
Dα

j

ð9Þ

Many natural phenomena vary spatially according to an inverse
distance squared relationship, which corresponds to a value of
α ¼ 2 in Eq. (9). Additionally, this study will explore a simpler
“straight” average of k observations by setting α to zero.

Q
S

e
/S

k

Fig. 2. Relative standard error for ROI application of Q̂ ¼ fðVw;HwÞ
as a function of neighborhood size, k.

Table 3. Summary of region of influence and k-nearest neighbor
approaches as applied to dam breach data set

Predictor(s) Approach

Calibration Prediction

Se=SQ k Se=SQ k

Hd ROI 0.758 10a 0.992 10a

kNN(0) — — 0.926 25
kNN(2) — — 0.983 30b

Hw ROI 0.687 10a 0.881 10a

kNN(0) — — 0.883 12
kNN(2) — — 1.10 23

L ROI 0.766 10a 1.37 10a

kNN(0) — — 1.03 10
kNN(2) — — 1.39 19c

S ROI 0.716 10a 1.26 10a

kNN(0) — — 0.804 3
kNN(2) — — 0.851 30b

Vw, Hw ROI 0.538 20a 1.03 20a

kNN(0) — — 0.682 9
kNN(2) — — 0.893 17

Vw, Hw, L
d kNN(0) — — 1.17 15

kNN(2) — — 1.17 15
Vw, Hw, W ROI 0.125 30a 0.872 30a

kNN(0) — — 1.07 29
kNN(2) — — 1.08 29

aSe=SQ value is reported at fixed value of 10p for all ROI analyses.
bMinimum Se=SQ value observed at fixed maximum of k = 30.
cMinimum Se=SQ value observed at maximum allowed by data set
(k ¼ 19).
dROI approach not employed for this model because total number of
observations was less than 10p.

© ASCE 04018065-5 J. Hydrol. Eng.

 J. Hydrol. Eng., 2019, 24(2): 04018065 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

G
le

nn
 M

og
le

n 
on

 1
1/

27
/1

8.
 C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



The goodness-of-fit performance for these two variations of the
kNN approach [kNN(0): α ¼ 0 and kNN(2): α ¼ 2] are presented
in Table 3 allowing for direct comparison to ROI performance.
Several observations are readily made: (1) relative standard error,
Se=SQ, is consistently smaller when α ¼ 0 as opposed to α ¼ 2;
(2) kNN(0) values are better than the ROI equivalent in five of six
cases examined (essentially equal in the remaining case); (3) kNN
did not perform well (Se=SQ > 1) for either three predictor analy-
ses: (Vw, Hw, L and Vw, Hw, W), possibly because both of these
data sets are relatively small in total observations; (4) focusing on
kNN(0), the optimal k-neighborhood size varies widely from 3 to
29, with 12 being the median value among the cases examined; and
(5) Se=SQ values could not be determined for kNN in calibration
mode because Dj ¼ 0 in Eq. (3) when evaluated at k ¼ 1, thereby
yielding perfect agreement between observation and prediction, but
this is not helpful in assessing kNN performance.

Application

To provide an additional perspective on the performance of the vari-
ous estimation approaches, a brief demonstration of each approach
is presented in the context of the functional form, Q̂ ¼ fðVw;HwÞ,
at the location Vw ¼ 910,000 m3, Hw ¼ 12.2 m. This is the same
location as the “x” shown in Fig. 1. There were three previous study
predictive equations for this pair of predictors, and their results,
along with the approaches presented in this work, are summarized
in Table 4. While the performance of any approach for an arbitrary
analysis point is, at best, anecdotal, it appears that the magnitude
of the errors (residuals) shown in Table 4 are generally consistent
with the overall findings associated with the various approaches
presented. Table 4 shows that the regression power-law model
calibrated from data in the appendix and shown in Table 2 per-
forms well, yielding the estimate closest to the observed value.
Langridge-Monopolis I provides the next closest estimate. The
same pattern emerges as before, with the ROI (calibration) estimate
being closer to the observed than the ROI (prediction estimate). The
kNN(0) and kNN(2) estimates are the lowest of all developed es-
timates. Finally, note that the range of estimates varies from 50% to
270% of the observed flood magnitude. This range highlights the
challenge of making flood estimates in the context of these multiple
approaches and the sparseness of the observational database.

Summary and Conclusions

This study examined both traditional and newer innovative ap-
proaches to making informed estimates based on earthen dam fail-
ure observations that are sparse owing to the rareness of occurrence
of such observations. While the equations and estimates reported

here are supported by an aggregate database (appendix), caution
should be used in interpreting any flood estimate, as highlighted
by the large range of flood estimates developed in the presented
application.

Table 5 provides a matrix-organized summary of our findings.
A set of seven new regression equations was developed and pre-
sented to predict floods from earthen dam breaches as a function
of several dam and reservoir characteristics. These regression equa-
tions, in all cases, produced goodness-of-fit statistics that were
superior to those of the previously published equations.

Two innovative prediction approaches were examined: ROI
and kNN. These approaches shared the characteristic of asserting
neighborhood similarity based on a Euclidean distance metric. The
most similar observations were used to draw a selective subset from
the overall data set of collected observations. In the case of the ROI
approach, the subset was then used to calibrate a formal regression
equation specific to the test location in question. In the kNN ap-
proach, observations were used in a weighted average scheme to
make an estimate at the test location.

Quantifying the performance of the ROI and kNN approaches
depends strongly on whether strict calibration statistics or typical
prediction statistics are sought. Goodness-of-fit statistics are calcu-
lated by quantifying the errors between the predicted and observed
criterion variable—flood peak in this case—across all observations.
The statistical approach to managing the neighborhood concept of
the ROI and kNN approaches is ambiguous. The term calibration
mode was used when the neighborhood used by the ROI or kNN
approach was allowed to include the observation itself in making a
prediction for that observation. The term prediction modewas used
when the observation was omitted from the neighborhood used in
its prediction. In calibration mode, the ROI approach performed
exceedingly well, favoring the smallest possible k neighborhood
size. In prediction mode, the ROI approach did not perform nearly
as well, and larger k neighborhood sizes were favored. Because the
general application of the ROI approach will be at locations where
an observation is unavailable, we assert that the prediction mode
approach provides the more realistic assessment of this approach’s
performance. The kNN approach suffers from the same problem as
ROI in its neighborhood definition. In this work, calibration mode
estimates were not made since the optimum solution would be at
k ¼ 1 and the goodness-of-fit performance would be perfect, a
meaningless outcome.

For the two innovative approaches examined, the kNN(0) vari-
ant was found to perform better than the kNN(2) variant and ROI
approach. This result means that taking the arithmetic mean of the
observations in a test location’s k neighborhood yielded the best
results. The optimal size of the k neighborhoods was found to vary
from 3 to 29 observations, depending on the predictor variable
examined, with a median of 12 observations across the seven func-
tional forms investigated.

Table 4. Application of Q̂ ¼ fðVw;HwÞ at (Vw ¼ 910,000 m3, Hw ¼ 12.2 m)

Source of estimate Equation used Q (m3=s) Residual (m3=s)

Observed N/A 1,130 —
MacDonald and Langridge-Monopolis I (1984) Q ¼ 1.154½ð910; 000Þ · ð12.2Þ�0.412 922 −208
MacDonald and Langridge-Monopolis II (1984) Q ¼ 3.85½ð910; 000Þ · ð12.2Þ�0.411 3,030 1,900
Froehlich (1995) Q ¼ 0.607½ð910; 000Þ0.295 · ð12.2Þ1.24� 773 −357
Regression power-law model: this study Q ¼ 0.640½ð910; 000Þ0.392 · ð12.2Þ0.866� 1,210 80
ROI (calibration) Q ¼ 0.601½ð910; 000Þ0.0958 · ð12.2Þ2.27� 654 −476
ROI (prediction) Q ¼ 0.511½ð910; 000Þ0.100 · ð12.2Þ2.30� 635 −495
kNN (α ¼ 0, k ¼ 9) N/A 570 −560
kNN (α ¼ 2, k ¼ 17) N/A 657 −473
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Two supporting matters were identified and discussed. The
first concerned the concept of a convex regression hull, previ-
ously illustrated in Fig. 1. It has long been understood that one
should not apply regression equations beyond the bounds of the
data used in generating the regression. It is similarly important
that the kNN approach not be applied outside the convex hull
of the observation data set. The second matter concerned the
means used to calibrate power-law regression equations. Numeri-
cal optimization, rather than the commonly used logarithmic
transform, was used here to calibrate equations of the form shown
in Eq. (6) and presented explicitly in Table 2. Although anec-
dotal, the results presented here clearly show the capacity for
numerical optimization to effectively calibrate regression equa-
tions that meet or exceed the performance of power-law equa-
tions that were calibrated through log-linearization. The authors
took the position that any equations calibrated would be used in
the real, arithmetic space, not the logarithmic space, and thus

numerical optimization was used to develop unbiased equations
in the arithmetic space.

The pragmatic reader seeking a best predictive approach to es-
timating a dam breach peak discharge has much to wade through
here. A single “best” approach or model is impossible to identify.
The “Application” section illustrated the wide range of possible
prediction outcomes for a specific observation and set of predictors.
Based on the results presented, defensible guidance is to use both
the numerical optimization equation (referred to as “This study” in
Table 2) and the kNN(0) approach because these were the top
performing methods. The specific numerical optimization or kNN
neighborhood would be determined by the predictor variables
available. Careful judgment should, of course, be exercised to en-
sure that the observed predictors lie within the regression hull of
observations used to develop a prediction from either approach.
Any prediction made should also be tempered by the information
and caveats enumerated in Table 5.

Appendix. Dam Failure Data Used in This Study

ID
number Dam location

Hd
(m)

Hw
(m)

L
(m)

S
(m3)

Vw
(m3)

W
(m)

Q
(m3=s) Reference

1 Apishapa, Colorado 34.14 28 — 22,500,000 22,200,000 82.4 6,850 Xu and Zhang (2009)
2 Baldwin Hills, California 71 12.2 198 1,100,000 910,000 59.6 1,130 Froehlich (1995)
3 Banqiao, China 24.5 31 2,000 492,000,000 607,500,000 — 78,100 Fujia and Yumei (1994)
4 Bass Haven Lake, Texas — 4.9 — — 641,000 22.9 240 USCOLD (1988)
5 Bayi, China 30 28 — 30,000,000 23,000,000 — 5,000 Xu and Zhang (2009)
6 Big Bay Dam, Mississippi 15.6 13.5 576.07 17,500,000 17,500,000 — 4,160 Yochum et al. (2008)
7 Bila Desna, Czech Republic — 10.7 — — 290,000 29.6 320 Jansen (1983)
8 Boystown, Pennsylvania — 8.96 — — 358,000 — 65.13 SCS (1986)
9 Bradfield, UK 28.96 — 382 3,200,000 — 50 1,150 Singh and Scarlatos (1988)
10 Break Neck Run, Pennsylvania 7 — — 49,000 — 86 9.2 Singh and Scarlatos (1988)
11 Buffalo Creek, West Virginia 14.02 14.02 — 484,000 484,000 128 1,420 Singh and Scarlatos (1988)
12 Butler, Arizona — 7.16 — — 2,380,000 9.63 810 Wahl (1998)
13 Caney Coon Creek, Oklahoma — 4.57 — — 1,320,000 — 16.99 SCS (1986)
14 Castlewood, Colorado 21.34 21.6 — 4,230,000 6,170,000 47.4 3,570 SCS (1986)
15 Reservoir 3, Centralia, Washington — 5.5 — — 13,333 10.1 71 Costa (1994)
16 Chenying, China 12 12 — 4,250,000 5,000,000 — 1,200 Xu and Zhang (2009)
17 Cherokee Sandy, Oklahoma — 5.18 — — 444,000 — 8.5 SCS (1986)
18 Clinton Lake Dam, Illinois 19.8 — — 91,540,000 — — 4,254 Singh and Snorrason (1982)
19 Colonial #4, Pennsylvania — 9.91 — — 38,200 — 14.16 SCS (1986)
20 Dam Site #8, Mississippi — 4.57 — — 870,000 — 49 SCS (1986)
21 Danghe, China 46 24.5 — 15,600,000 10,700,000 — 2,500 Xu and Zhang (2009)
22 Davis Reservoir, California 11.89 11.58 — 58,000,000 58,000,000 — 510 Xu and Zhang (2009)
23 Dells, Wisconsin 18.3 18.3 — 13,000,000 13,000,000 — 5,440 Xu and Zhang (2009)
24 DMAD, Utah 8.8 — — 19,700,000 19,700,000 — 793 Pierce et al. (2010)
25 Dongchuankou, China 31 31 — 27,000,000 27,000,000 — 21,000 Xu and Zhang (2009)
26 Eigiau, UK 10.5 10.5 — 4,520,000 4,520,000 — 400 Singh and Scarlatos (1988)
27 Elk City 9.1 9.44 564 — 1,180,000 — 608.79 Taher-shamsi et al. (2003)
28 Euclides de Cunha, Brazil 53.04 58.22 — 13,600,000 13,600,000 — 1,020 Taher-shamsi et al. (2003)
29 Field Test 1-1, Norway — 6.1 — — 73,000 — 190 Hassan et al. (2004)
30 Field Test 1-2, Norway — 5.9 — — 63,000 — 113 Hassan et al. (2004)
31 Field Test 1-3, Norway — 5.9 — — 63,000 — 242 Vaskinn et al. (2004)
32 Field Test 2-2, Norway — 5 — — 35,900 — 74 Hassan et al. (2004)
33 Field Test 2-3, Norway — 6 — — 67,300 — 174 Vaskinn et al. (2004)
34 Field Test 3-3, Norway — 4.3 — — 22,000 — 170 Vaskinn et al. (2004)
35 FP&L Martin Plant, Florida — 5.09 — — 125,000,000 27.7 2,750 SFWMD (1980)
36 Frankfurt, Germany 9.75 8.23 — 350,000 352,000 — 79 Xu and Zhang (2009)
37 Fred Burr, Montana 10.4 10.2 — 752,000 750,000 30.8 654 Boner and Stermitz (1967)
38 French Landing, Michigan 12.19 8.53 — — 3,870,000 34.3 929 Xu and Zhang (2009)
39 Frenchman Creek, Montana 12.5 10.8 — 21,000,000 16,000,000 37.3 1,420 Oltman (1955)
40 Frias, Argentina 15 15 62.2 250,000 250,000 — 400 Xu and Zhang (2009)
41 Goose Creek, South Carolina 6.1 1.37 — 10,600,000 10,600,000 — 565 Taher-shamsi et al. (2003)
42 Gouhou, China 71 44 — 3,300,000 3,180,000 — 2,050 Xu and Zhang (2009)
43 Grand Rapids, Michigan 7.6 7.5 — 220,000 255,000 — 7.5 Singh and Scarlatos (1988)
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Appendix. (Continued.)

ID
number Dam location

Hd
(m)

Hw
(m)

L
(m)

S
(m3)

Vw
(m3)

W
(m)

Q
(m3=s) Reference

44 Granite Creek, Alaska — — — — — — 1,841 NRC (1983)
45 Hatchtown, Utah 19.2 16.8 238 14,800,000 14,800,000 44.8 3,080 Wahl (1998)
46 Hatfield, Wisconsin 6.8 — — 12,300,000 — — 3,400 Xu and Zhang (2009)
47 Haymaker, Montana — 4.88 — — 370,000 — 26.9 SCS (1986)
48 Hell Hole, California 67.06 35.1 — 30,600,000 30,600,000 103.2 7,360 Xu and Zhang (2009)
49 Hemet Dam, California 6.09 6.09 — 8,630,000 8,630,000 — 1,600 Taher-shamsi et al. (2003)
50 Horse Creek 12.2 7.01 701 21,000,000 12,800,000 — 3,890 Xu and Zhang (2009)
51 Horse Creek #2, Colorado — 12.5 — — 4,800,000 — 311.49 SCS (1986)
52 Huqitang, China 9.9 5.1 — 734,000 424,000 — 50 Xu and Zhang (2009)
53 Ireland No. 5, Colorado — 3.81 — — 160,000 18 110 Froehlich (1995)
54 Johnstown (South Fork Dam,

Pennsylvania)
38.1 24.6 284 18,900,000 18,900,000 64 8,500 Wahl (1998)

55 Johnstown, Pennsylvania 22.86 22.25 — 18,900,000 18,900,000 — 7,079.20 Wahl (1998)
56 Kelly Barnes, Georgia 11.58 11.3 — 505,000 777,000 19.4 680 Xu and Zhang (2009)
57 Kinkaid Lake Dam, Illinois 28 — — 96,840,000 — — 2,011 Singh and Snorrason (1982)
58 Knife Lake Dam, Minnesota 6.096 6.096 — 9,860,000 9,860,000 — 1,098.66 Taher-shamsi et al. (2003)
59 Kodaganar, India 11.5 11.5 — 12,300,000 12,300,000 — 1,280 Xu and Zhang (2009)
60 Lake Avalon, New Mexico 14.5 13.7 — 7,750,000 31,500,000 42.7 2,320 Taher-shamsi et al. (2003)
61 Lake in the Hills Dam No. 1,

Illinois
12.2 — — 740,000 — — 238 Singh and Snorrason (1982)

62 Lake in the Hills Dam No. 2,
Illinois

4.4 — — 100,000 — — 321 Singh and Snorrason (1982)

63 Lake Latonka, Pennsylvania 13 6.25 — 1,590,000 4,090,000 28 290 Wahl (1998)
64 Lake Marian Dam, Illinois 15.2 — — 190,000 — — 90 Singh and Snorrason (1982)
65 Lake Springfield Dam, Illinois 14.6 — — 66,000,000 — — 3,437 Singh and Snorrason (1982)
66 Lake Tanglewood, Texas — 16.76 — — 4,850,000 — 1,351 SCS (1986)
67 Laurel Run, Pennsylvania 12.8 14.1 — 385,000 555,000 40.5 1,050 Froehlich (1995)
68 Lawn Lake, Colorado 7.9 6.71 — — 798,000 14.2 510 Wahl (1998)
69 Lijiaju, China 25 25 — 1,140,000 1,140,000 — 2,950 Xu and Zhang (2009)
70 Lily Lake, Colorado — 3.35 — — 92,500 — 71 Froehlich (1995)
71 Little Deer Creek, Utah 26.21 22.9 — 1,730,000 1,360,000 63.1 1,330 Wahl (1998)
72 Little Wewoka, Oklahoma — 9.45 — — 987,000 — 42.48 SCS (1986)
73 Liujiatai, China 35.9 35.9 — 40,540,000 40,540,000 — 28,000 Xu and Zhang (2009)
74 Lower Latham, Colorado — 5.79 — 7,080,000 7,080,000 25.7 340 Froehlich (1995)
75 Lower Reservoir, Maine — 9.6 — — 604,000 — 157.44 SCS (1986)
76 Lower Two Medicine, Montana 11.28 11.3 — 19,600,000 29,600,000 — 1,800 Boner and Stermitz (1967)
77 Mahe, China 19.5 19.5 — 23,400,000 23,400,000 — 4,950 Xu and Zhang (2009)
78 Mammoth, Utah 21.3 — — 13,600,000 — — 2,520 Xu and Zhang (2009)
79 Martin Cooling Pond Dike, Florida — 8.53 — 136,000,000 136,000,000 — 3,115 Xu and Zhang (2009)
80 Middle Clear Boggy, Oklahoma — 4.57 — — 444,000 — 36.81 SCS (1986)
81 Mill River, Massachusetts 13.1 — — 2,500,000 2,500,000 — 1,645 Wahl (1998)
82 Murnion, Montana — 4.27 — — 321,000 — 17.5 SCS (1986)
83 Nanaksagar, India 15.85 — — 210,000,000 — — 9,700 Taher-shamsi et al. (2003)
84 North Branch Tributary,

Pennsylvania
5.5 5.49 — — 22,200 — 29.5 Wahl (1998)

85 Oros, Brazil 35.36 35.8 — 650,000,000 660,000,000 110 9,630 Wahl (1998)
86 Otto Run, Pennsylvania 5.8 5.79 — — 7,400 — 60 Pierce et al. (2010)
87 Owl Creek, Oklahoma — 4.88 — — 120,000 — 31 SCS (1986)
88 Peter Green, New Hampshire — 3.96 — — 19,700 — 4 SCS (1986)
89 Pierce Lake Dam, Illinois 14 — — 3,280,000 — — 864 Singh and Snorrason (1982)
90 Porter Hill, Oregon — 5 — — 15,000 12 30 Costa and O’Connor (1995)
91 Prospect, Colorado — 1.68 — — 3,540,000 13.1 116 Wahl (1998)
92 Puddingstone, California — 15.2 — — 617,000 — 480 Froehlich (1995)
93 Qielinggou, China 18 18 — 700,000 700,000 — 2,000 Xu and Zhang (2009)
94 Quail Creek, Utah — 16.7 — — 30,800,000 56.6 3,110 Wahl (1998)
95 Salles Oliveira, Brazil 35.05 38.4 — 25,900,000 71,500,000 — 7,200 Singh and Scarlatos (1988)
96 Sandy Run, Pennsylvania 8.53 8.53 — 56,800 56,700 — 435 Singh and Scarlatos (1988)
97 Schaeffer, Colorado 30.5 30.5 335 3,920,000 4,440,000 80.8 4,500 Wahl (1998)
98 Sherbourne, New York 10.36 — 91.4 42,000 — — 960 Singh and Snorrason (1982)
99 Shimantan, China 25 27.4 500 94,400,000 117,000,000 — 30,000 Fujia and Yumei (1994)
100 Sinker Creek Dam, Idaho 21.34 21.34 — 3,330,000 3,330,000 — 926 Taher-shamsi et al. (2003)
101 Site Y-30-95, Mississippi — 7.47 — — 142,000 — 144.42 SCS (1986)
102 Site Y-31 A-5, Mississippi — 9.45 — — 386,000 — 36.98 SCS (1986)
103 Site Y-36-25, Mississippi — 9.75 — — 35,700 — 2.12 SCS (1986)
104 South Fork Tributary, Pennsylvania 1.8 1.83 — — 3,700 — 122 Pierce et al. (2010)
105 South Fork, Pennsylvania — 24.6 — — 18,900,000 — 8,500 Froehlich (1995)
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Appendix. (Continued.)

ID
number Dam location

Hd
(m)

Hw
(m)

L
(m)

S
(m3)

Vw
(m3)

W
(m)

Q
(m3=s) Reference

106 Stevens Dam, Montana — 4.27 — — 78,900 — 5.92 SCS (1986)
107 Swift, Montana 57.61 47.85 226 37,000,000 37,000,000 — 24,947 Singh and Snorrason (1982)
108 Taum Sauk, Missouri — 31.46 2,000.1 5,390,000 5,390,000 — 7,743 FERC (2006)
109 Teton, Idaho 92.96 77.4 — 356,000,000 310,000,000 250 65,120 Wahl (1998)
110 Upper Clear Boggy, Oklahoma — 6.1 — — 863,000 — 70.79 SCS (1986)
111 Upper Red Rock, Oklahoma — 4.57 — — 247,000 — 8.5 SCS (1986)
112 USDA-ARS Test #1, Oklahoma 2.29 2.29 7.3 — 4,900 — 6.5 Hanson et al. (2005)
113 USDA-ARS Test #3, Oklahoma 2.29 2.29 7.3 — 4,900 — 1.8 Hanson et al. (2005)
114 USDA-ARS- Test #4, Oklahoma 1.5 1.5 4.9 — 5,090 — 2.3 Hanson et al. (2005)
115 USDA-ARS Test #6, Oklahoma 1.5 1.5 4.9 — 5,190 — 1.3 Hanson et al. (2005)
116 USDA-ARS Test #7, Oklahoma 2.13 2.13 12 — 4,770 — 4.2 Hanson et al. (2005)
117 Weatland Reservoir, Wyoming 13.6 12.2 — 11,500,000 11,600,000 — 566.34 Pierce et al. (2010)
118 Weslake Dam, Illinois 14.6 — — 2,800,000 — — 35 Singh and Snorrason (1982)
119 Zhugou, China 23.5 23.5 — 15,400,000 18,430,000 — 11,200 Xu and Zhang (2009)
120 Zuocun, China 35 35 — 40,000,000 40,000,000 — 23,600 Xu and Zhang (2009)
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