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Abstract

Solution Technique

To solve this PDE we will use a solution function in the form:

ෝ𝜔(𝑥, 𝑦, 𝑧) =

𝑗=1

𝑛

𝑐𝑗𝑔𝑗 𝑥, 𝑦, 𝑧 ,

where 𝑐𝑗 is the coefficient for the j-th basis function, and where 𝑔𝑗 𝑥, 𝑦, 𝑧 is that 

basis function evaluated at the point 𝑥, 𝑦, 𝑧 . To solve for the coefficients there 

must be 2𝑛 known potential values. Then the following matrix equation can be 

created, in the form Gc=w.

The matrix G assembles the value of each basis function at every collocation 

point, and w is the vector of potential values at these locations. The vector c is the 

vector of coefficients. This vector is solved using MATLAB’s matrix solving 

algorithm. Finally, the coefficients are substituted back into the approximation 

function. 

Optimizing Node Locations for the 

Method of Fundamental Solutions

The Method of Fundamental Solutions (MFS) is a method of solving boundary value 

problems that is “meshless,” meaning that it does not require domain discretization. 

Instead, a collection of nodes located outside the problem boundary are used to 

collocate the boundary and develop a linear combination of basis functions that can 

be used to approximate the solution to the problem. A major contingency of the 

accuracy of the resulting approximation function is the location of nodes outside the 

problem boundary, and the optimization of these locations has not yet been 

examined in other research. This research proposes an algorithm that completes that 

goal, and the algorithm is tested using an example problem. 

Algorithm Description

The goal in this research is to optimize the node locations implemented in the 

individual basis functions. The following is a step-by-step description of the algorithm 

that completes this task.

1. Array a set of collocation points and a set of nodal coordinates

2. Set a maximum number of nodes that are desired for the final model.

3. Determine the optimal one-node model. Every combination of one node and one 

collocation point is used to solve for the coefficient that, when substituted into the 

one-node model with its corresponding node, minimizes Root Mean Squared 

Error (RMSE).

where 𝑛 is the number of evaluation points that will be used to measure RMSE. 

4. Remove the chosen node and collocation point from the initial pool of candidate 

locations, and fix those locations in the model.

5. Determine the optimal n-node model. Similar to Step 3, for each successive 

iteration choose the next node and collocation point pair that minimizes RMSE. 

Example Problem

The example problem is to solve the 3D Laplace’s equation for the boundary conditions of 
1

𝑅𝑗
=

1

𝑥2 + 𝑦2 + 𝑧2
.

Although the boundary conditions are in the same form as the basis functions, this 

problem provides convincing evidence for the efficacy of the optimization algorithm. Below 

is the problem domain.

The white dots are the evaluation points, the black dots are the collocation points, and the 

blue plus signs are the nodal locations. In total there are 62 evaluation points, 62 

collocation points, and 119 nodal locations. The domain has a length of 2, a height of 1, 

and a width of 3. 

Basis Function Definition

The general basis function for the example problem is the inverse source function,
1

𝑅𝑗
,

where 𝑅𝑗 is the distance from a given node 𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗 , given by 

(𝑥 − 𝑥𝑗)
2+(𝑦 − 𝑦𝑗)

2+(𝑧 − 𝑧𝑗)
2,

and the resulting approximation function will again be the sum of these basis 

functions combined with the coefficient 𝑐𝑗, 

ෝ𝜔(𝑥, 𝑦, 𝑧) =

𝑗=1

𝑛
𝑐𝑗
𝑅𝑗
.

Problem Solution

Using the algorithm, a ten-node model was created. Tables 1, 2, and 3 report the 

chosen collocation points, chosen node locations, and resulting model coefficients in the 

order chosen and calculated, respectively. 

Results and Conclusions

Figure 2 shows that increasing the number of nodes in the model improves RMSE much 

more drastically at first, but it always improves error. In the future, researchers can use 

these results to determine the number of nodes that will create an RMSE within a 

certain magnitude. Lowering error with fewer nodes ultimately has the significant benefit 

of avoiding sources of error from reaching the limits of matrix solvability with large 

matrices. Nevertheless, there is much more room to continue improving the efficiency 

and accuracy of MFS approximation functions. 

As expected, once substituting these coefficients into the approximation function using 

the basis functions created using the chosen node locations, the result is not only a 

highly accurate model, but also one that improves with each iteration. The table below 

shows the RMSE values for each model from one node to ten nodes. 

Global Problem

The governing partial differential equation (PDE) is the 3D Laplace’s equation, 

𝑢𝑥𝑥 + 𝑢𝑦𝑦 + 𝑢𝑧𝑧 = 0,

an equation use extensively in modeling physical phenomena such as ideal fluid flow or 

heat transfer. 


