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Abstract 

Boundary Element Method (BEM) computer models typically involve use of nodal points that are the locations of singular potential functions such as the logarithm or 
reciprocal of the Euclidean distance function. Recent research on the types of basis functions used in a BEM approximation has shown that considerable improvement in 
computational accuracy and efficiency can be achieved by optimizing the location of the singular basis functions with respect to possible locations on the problem boundary and also 
locations exterior of the problem boundary. To develop such optimum locations for the modeling nodes (and associated singular basis functions), the approach presented here is to 
develop a Real Time Boundary Element Node Location module that enables the program user to click and drag nodes throughout the exterior of the problem domain. The provided 
module interfaces with the Complex Variable Boundary Element Method (CVBEM) program, built within computer program Mathematica, so that various types of information 
flows to the display module as the node is moved, enabling the user to determine “optimum” nodal locations in real time. 

Ten Step Boundary Condition Problem: 

As a demonstration problem, a ten-step Dirichlet type boundary condition is used that introduces singularities in the boundary conditions at the interfaces between the boundary 
condition stepped values. Because the CVBEM results in an approximation function that is analytic everywhere except along branch cuts and at nodal points, and furthermore is 
continuous everywhere except at the branch cuts but is continuous at the nodal points, then the imposed singularities of the boundary condition cannot be matched but will be 
approximated as a typical Fourier series representation along a stepped target function. This behavior (similar to a Fourier series) is the result of the approximation process involved 
with the Hilbert Space setting. Figure 2 displays a typical comparison between the ten-stepped problem boundary conditions along the problem boundary and the corresponding 
CVBEM approximation function evaluated along the problem boundary, for a single node CVBEM approximation function with nodes located as shown in Figure 1.  As more nodes 
are introduced into the CVBEM approximation function, the resulting comparison between CVBEM and given boundary condition values will converge similar to what is seen as 
more terms are added to a generalized Fourier series approximation (see Figures 3-8). This is evidenced by the decreasing L2 and L∞ norms as the number of nodes increases. 

   

    Figure 1: Single Node at the Bottom-Left Vertex                Figure 5: Five Node Model 
 

      

   Figure 2: Fit of Function to Boundary Conditions     Figure 6: Fit of Function to Boundary Conditions 
        L2=86.2094        L∞=4.75691               L2=48.2625        L∞=3.38377 

     

          Figure 3: Adjusted Nodal Location                             Figure 7: Optimized Clustered 10 Node Model  
 
 

   

   Figure 4: Fit of Function to Boundary Conditions         Figure 8: Fit of Function to Boundary Conditions 
        L2=99.0174        L∞=4.18971                                                             L2=26.5259        L∞=1.26019 
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"Optimal" Locations 

The finalized so-called "optimal" locations are concluded based upon the three 
types of error measures used in the nodal point location optimization. Although 
the search for optimal nodal point locations is not at all exhaustive in the current 
paper, sufficient extent exterior of the problem domain is examined such as to 
demonstrate the utility of nodal point location optimization using the three 
approximation error measures considered (graphical, L2, and L∞). Of course, 
other measures of approximation error may result in different concluded optimal 
locations. Further research is needed to assess better error measures to base the 
process used for optimizing nodal point locations. 

Assessment of a Given Path 

The general procedure used in this paper for searching for optimal nodal 
locations (that reduce all three considered approximation error measures) is to 
introduce a nodal point upon the problem boundary and then to move the target 
node into the exterior of the problem domain further and further away until the 
three error measures appear to not be significantly improving the approximation. 
Similarly, the target node is also moved into the interior of the problem domain. 
Once that particular line of search is assessed, the target node is then re-
introduced into the CVBEM approximation function, but this time at a different 
location on the problem boundary, and the previously mentioned procedure 
repeated. After examining all the considered pathways, the optimal node location 
is concluded. Then, a new target node may be introduced and the entire process 
repeated. In the problems considered, movement of the target node did not appear 
to follow generalized trends such as linearly decreased approximation error 
versus departure distance from the problem boundary. 
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