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Boundary Element Method (BEM) computer models typically involve use of nodal points that are the
locations of singular potential functions such as the logarithm or reciprocal of the Euclidean distance
function. These singular functions are typically associated with the nodes themselves as far as
identification. The Complex Variable Boundary Element Method (CVBEM) is another application of
similar types of singular potential functions and includes other functions that are not singular but are
fundamental solutions of the governing partial differential equation (PDE). These various singular
potential functions form a basis whose span of linear combinations (either real or complex space, as
appropriate) is a vector space. As part of the approximation approach, one determines that element in
the vector space that is closest (usually in a least squares residual measure) to the exact solution of the
PDE and related boundary conditions. Recent research on the types of basis functions used in a BEM or
CVBEM approximation has shown that considerable improvement in computational accuracy and
efficiency can be achieved by optimizing the location of the singular basis functions with respect to
possible locations on the problem boundary and also locations exterior of the problem boundary (in
general, exterior of the problem domain). To develop such optimum locations for the modeling nodes
(and associated singular basis functions), the approach presented in this paper is to develop a Real Time
Boundary Element Node Location module that enables the program user to click and drag nodes (one at
a time) throughout the exterior of the problem domain (that is, nodes are allowed to be positioned on
or arbitrarily close to the problem boundary, and also to be positioned exterior of the problem domain
union boundary). The provided module interfaces with the CVBEM program, built within computer
program Mathematica, so that various types of information flows to the display module as the node is
moved, in real time. The information displayed includes a graphic of the problem boundary and
domain, the exterior of the domain union boundary, evaluation points used to represent problem
boundary conditions, nodal locations, modeling error in L, and also L., norms, and a plot of problem
boundary conditions versus modeling estimates on the problem boundary to enable a visualization of
closeness of fit of the model to the problem boundary conditions. As the target node is moved on the
screen, these various information forms change and are displayed to the program user, enabling the
user to quickly navigate the target node towards a preferred location. Once a node is established at
some optimized location, another node can then be clicked upon and dragged to new locations, while
reducing modeling error in the process.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. The CVBEM

such as developed by Hromadka and Guymon [3]. Subsequent to
the original CVBEM development, the CVBEM was extended into a
Hilbert space setting by writing the CVBEM approximation func-
tion as a linear combination of analytic function basis functions

The Complex Variable Boundary Element Method (CVBEM) is a
boundary element technique that was originally developed using
a numerical solution of the well-known Cauchy Integral Equation
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and then selecting the complex coefficients used in the linear
combination such as to minimize the usual least-squares error
between the problem boundary conditions and the approxima-
tion function evaluated on the problem boundary [1]. The usual
basis functions are products of complex polynomials with com-
plex logarithm functions expanded about “nodal points” placed
upon the problem boundary. Other basis function families, such
as complex polynomials, or other analytic functions may be used
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or mixed together, including Laurent series expansion involving
monomials with negative powers. The CVBEM was extended to
three and higher dimensions by Hromadka and Whitley [1].

1.2. Similar techniques

Other similar but different numerical modeling techniques
include the method of fundamental solutions (e.g. [2]), and the
Complex polynomial method (Hromadka [3] and more recently
Bohannon [4]). Because of the similarities between these numer-
ical approximation techniques, there are common features among
those approximations that involve basis functions (or approxima-
tion functions) that are singular. Such singular functions of
interest typically include functions involving the logarithm or
the reciprocal function, among other possibilities (for example,
the negative powered complex monomials used in the Laurent
series provide a wide family of relevant potential singular func-
tions for use in approximations of the Laplace equation). These
singular basis functions are typically defined with respect to a
particular location, which is a pole or singularity of that particular
basis function. In general, these singularities or poles are defined
with respect to modeling nodal points (or nodes). Boundary
element numerical methods typically locate such nodes on the
problem boundary. For example, the CVBEM nodes are typically
found on the problem boundary as a result of the numerical
integration of the Cauchy Integral equation. The current paper
also provides a link between boundary element methods and
other modeling techniques such as the method of fundamental
solutions [5], where consideration is made of (i.e., “fundamental
solutions”) singularities or poles to be located in the exterior of
the problem domain.

2. Nodal location optimization
2.1. Optimization method

The general procedure used in this paper for searching for
optimal nodal locations (that reduce all three considered approx-
imation error measures) is to introduce a nodal point upon the
problem boundary and then to move the target node into the
exterior of the problem domain further and further away until
the three error measures appear to not be significantly improving
the approximation. Similarly, the target node is also moved into
the interior of the problem domain. Once that particular line of
search is assessed, the target node is then re-introduced into the
CVBEM approximation function, but this time at a different
location on the problem boundary, and the previously mentioned
procedure repeated. After examining all the considered pathways,
the optimal node location is concluded. Then, a new target node
may be introduced and the entire process repeated. In the
problems considered, movement of the target node did not
appear to follow generalized trends such as linearly decreased
approximation error versus departure distance from the problem
boundary.

With the recent advance of optimization of nodal point
locations on the problem boundary and also exterior of the
problem domain, additional degrees of freedom are available to
better approximate the problem boundary conditions, resulting in
a significantly improved CVBEM approximation function. Because
nodal point location optimization is achieved by searching the
region located outside of the problem domain, having measures of
approximation error displayed while moving the target nodal
point provides an environment that speeds up the optimization
process. Further research is needed, however, to develop more
direct methods in finding such optimized nodal point locations.

In the current paper, three measures of error are displayed during
the iterative process of searching for an optimized location for a
target node. Namely, a least-squares error, a maximum error
measure, and a plot of the problem, boundary conditions versus
the current status of the CVBEM approximation function evalu-
ated at the problem boundary.

The finalized so-called “optimal” locations are concluded
based upon the three types of error measures used in the nodal
point location optimization. Although the search for optimal
nodal point locations is not at all exhaustive in the current paper,
sufficient extent exterior of the problem domain is examined such
as to demonstrate the utility of nodal point location optimization
using the three approximation error measures considered. Of
course, other measures of approximation error may result in
different concluded optimal locations. Further research is needed
to assess better error measures to base the process used for
optimizing nodal point locations.

2.2. Optimization procedure using mathematica

In the current paper, the above described Node Location
Optimization method is implemented using the computer pro-
gram Mathematica (relevant Mathematica code is available from
the correspondence author). The ability to locate nodes through-
out the exterior of the problem domain is explored and a
computational module is presented that enables the program
user to click upon any nodal point, drag that target node to any
new location in the problem exterior (except to be coincident
with another node location). The computational engine of the
model, (the CVBEM) determines new modeling results for the
newly established nodal location, including modeling error in
matching problem boundary conditions, so that the program user
can assess a desirable new location for that target node. Once the
target node is relocated, the program user then proceeds to any of
the other modeling nodes and then navigates that new target
node throughout the problem exterior (while the computational
engine re-determines the corresponding modeling results using
the usual CVBEM least-squares error minimization approach in
matching problem boundary conditions) until an improved
CVBEM model is concluded. Each node can be likewise reposi-
tioned. Similarly, re-positioned nodes can be re-navigated at a
later occasion in the optimization process.

The application develops the latest error information in
matching the problem boundary conditions with respect to both
the least squares error residual and also the maximum absolute
value of error along the problem boundary. This error information
is returned to the program user, along with a plot of problem
boundary conditions as well as the latest developed CVBEM
approximation function evaluated continuously along the pro-
blem boundary to provide a visual measure of modeling “good-
ness of fit” to the problem boundary conditions. Because the
CVBEM exactly solves the governing partial differential equations
(for example, the Laplace equation in the demonstration pro-
blems), the modeling error is assessed by the “goodness of fit”
with the problem boundary conditions. As the program user
continues to move the selected node to other positions, the
corresponding error measures and graphs are redeveloped so that
the program user can use the application as feedback in real time
as guidance in locating an optimum nodal position in reducing
modeling error. Once the selected node’s position is finalized, the
program user selects the next node for assessing an improved
location, and the above process is repeated. In this fashion, some
or all of the initially defined modeling nodes are positioned to
reduce modeling error.

Being able to interactively design a modeling nodal scheme,
for nodes to be positioned on the problem boundary or in the
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Fig. 1. Single node at the bottom-left vertex.
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Fig. 2. Fit of function to boundary conditions. L,=86.2094, L., =4.75691.

exterior of the problem domain, creates a new modeling environ-
ment. Furthermore, visualization of the modeling error in match-
ing problem boundary conditions provides a good feedback
between the modeling approach and the model user, so that
modeling efficiency is increased and modeling accuracy
improved.

2.3. Demonstration problem in mathematica

As a demonstration problem, a ten-step Dirichlet type bound-
ary condition is used in that introduces singularities in the
boundary conditions at the interfaces between the boundary
condition stepped values. Because the CVBEM results in an
approximation function that is analytic everywhere except along
branch cuts and at nodal points, and furthermore is continuous
everywhere except at the branch cuts but is continuous at the
nodal points, then the imposed singularities of the boundary
condition cannot be matched but will be approximated as a
typical Fourier series representation along a stepped target
function. This behavior (similar to a Fourier series) is the result
of the approximation process involved with the Hilbert space
setting. Fig. 2 displays a typical comparison between the ten-
stepped problem boundary conditions along the problem bound-
ary and the corresponding CVBEM approximation function eval-
uated along the problem boundary, for a single node CVBEM
approximation function with nodes located as shown in Fig. 1. As
more nodes are introduced into the CVBEM approximation func-
tion, the resulting comparison between CVBEM and given

boundary condition values will converge similar to what is seen
as more terms are added to a generalized Fourier series approx-
imation (see Figs. 3-8). This is evidenced by the decreasing L, and
L., norms as the number of nodes increases.

In Fig. 8, we see substantial improvement in the approxima-
tion fit to the problem boundary conditions can be achieved by
adding more nodal points to the approximation function effort.
Analogous to generalized Fourier series approximations, an
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Fig. 5. Five node model.
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Fig. 6. Fit of function to boundary conditions. L,=48.2625, L., =3.38377.
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Fig. 7. Optimized clustered 10 node model.
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Fig. 8. Fit of function to boundary conditions. L,=26.5259, L., =1.26019

increase in nodal point number used in the CVBEM approximation
function is like increasing the dimension of the basis function set
used in the generalized Fourier series expansion, decreasing

approximation error accordingly. In Fig. 8, the modeling effort
at that junction is displayed so as to demonstrate the CVBEM
approximation function fit to the problem boundary conditions in
a ten stepped discontinuous boundary condition problem with
the use of only a few nodal points that have locations optimized
by the presented procedure.

3. Conclusions

In this paper, a new approach to CVBEM (and BEM) modeling
is presented using real time CVBEM program modeling error
feedback. The modeling error feedback is provided by a new
application developed in program Mathematica that enables a
program user “click and drag” capability for repositioning CVBEM
modeling nodes throughout the exterior of the problem domain.
Using CVBEM modeling error measure feedback as a guide,
produced in real time, the program user can “click and drag”
any of the CVBEM modeling nodes while observing the CVBEM
model being continuously rebuilt based upon the assembly of the
latest nodal point locations, and the corresponding modeling
error measures. In this fashion, an optimum positioning of the
CVBEM modeling nodes can be obtained, in a new modeling
interactive/feedback mode of operation. This modeling approach
can be applied to other numerical techniques; particularly those
that use functions that are position dependent, such as singular
functions (i.e., negatively powered monomials, logarithms, etc).
Because the CVBEM exactly solves the governing PDE over the
problem domain, the modeling goal is simply the minimization of
modeling error in matching problem boundary conditions, and,
because the success in matching problem boundary conditions
depends on the positioning of model nodal points, the provided
approach for optimizing nodal point locations may be useful in
developing better CVBEM (and BEM) models.
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