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The well-known complex variable boundary element method (CVBEM) is extended for using collocation
points not located at the usual boundary nodal point locations. In this work, several advancements to
the implementation of the CVBEM are presented. The first advancement is enabling the CVBEM nodes to
vary in location, impacting the modeling accuracy depending on chosen node locations. A second
advancement is determining values of the CVBEM basis function complex coefficients by collocation at
evaluation points defined on the problem boundary but separate and distinct from nodal point locations
(if some or all nodes are located on the problem boundary). A third advancement is the implementation
of these CVBEM modeling features on computer program Mathematica, in order to reduce programming
requirements and to take advantage of Mathematica’s library of mathematical capabilities and graphics

Published by Elsevier Ltd.

1. Introduction

The complex variable boundary element method (CVBEM) has
been reported in the literature extensively, with a recent Special
Edition of the Journal of Engineering Analysis with Boundary
Elements (see volume 30 (2006), issue 12) dedicated to the recent
advances in CVBEM. The CVBEM is useful in modeling problems
involving LaPlace or Poisson equations for an arbitrary target
potential function (i.e., temperature, ideal fluid flow, electro-
statics, groundwater flow, among many other topics). The under-
pinning of the CVBEM is the well-known Cauchy integral formula,
which relates values of an analytic complex function in the
interior of a simply connected domain to a contour integral of
values of that analytic function (or continuous function) defined
on a simple closed contour boundary that encloses the subject
domain.

The CVBEM utilizes a set of analytic functions as basis
functions and then formulates a vector space of linear combina-
tions of these basis functions using complex coefficients. Such
linear combinations are therefore also analytic functions, where
the real and imaginary parts of these linear combinations are two-
dimensional real-valued functions, both satisfying the LaPlace
equation over the entire problem domain and also on the problem
boundary. Depending on the type of analytic basis functions used,
branch-cuts or other singularities may be involved, which can be
handled by locating relevant singularities outside the problem
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domain and perhaps also outside and displaced from the problem
boundary. As a result, the real and imaginary components of the
approximation function satisfy the LaPlace equation inside, on,
and outside the problem boundary except at singularity points
and related branch-cuts, if any. For example, Bohannon and
Hromadka [1] use complex monomials as the basis function set
(complex polynomial method) and develop approximation func-
tions that are analytic in the entire plane, which do not involve
singularities or branch-cuts anywhere in the plane. The CVBEM
formulation results in a convex combination of products of
complex polynomials with complex logarithms. This product of
complex analytic functions can be evaluated at the nodes (i.e., the
branch points of the complex logarithms) because the limit exists
as the arbitrary coordinate point z approaches the node (if located
on the problem boundary) from the interior of the problem
domain. The limiting value can also be examined by the usual
L’Hopital Rule derivation.

The idea of using series expansions of functions, such as the
underpinning of the CVBEM, or the well-known Fourier Series
expansions, or other such series expansions, is an important concept
in the approximation of functions and partial differential equations
such as the LaPlace equation, among other important relationships in
engineering and science. Viewed in terms of a series expansion, the
CVBEM approach presented in this work considers nodal points
located in the exterior of the problem domain union boundary, which
is a novel technique in such boundary element modeling. But the
idea of expanding series about points located in the exterior of a
problem domain union boundary is not new and is well examined in
various works, including the work of Wang et al. [2], where the target
problem domain is “embedded” within a larger circular domain
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(or other appropriate geometric shapes), on which a series expansion
can be more readily developed, such as the Fourier type, among other
possible expansions. When viewed as a series expansion, the CVBEM
parallels other series expansions and the CVBEM can take advantage
of other such important concepts such as those found in the
embedding approach for modeling, among other concepts.

In the current work, basis functions of the form (z—z;)Ln(z—z;) are
used, where z; are nodal points defined perhaps on the problem
boundary or exterior of the problem boundary union problem
domain. (Motivation for using such basis functions follows by the
numerical integration of linear polynomial basis functions in the
Cauchy integral formula. See Hromadka and Whitley [3].) The natural
logarithm function is defined at each nodal point such that the
branch-cut is positioned to lie entirely exterior of the problem domain
union problem boundary. Therefore, the linear combination of such
basis functions form the CVBEM approximation function, which is
analytic everywhere except at nodal points z; and the relevant
branch-cuts. The real and imaginary parts of the CVBEM approxima-
tion function both exactly satisfy the LaPlace equation, where the
approximation function is analytic as mentioned previously.

Complex coefficients of the form g;+ib; are used with each
basis function where i is the usual square root of —1, and “a” and
“b” are real constants to be determined under some selected rule
to satisfy boundary condition values. In the current work, each
basis function has two real-valued coefficients to be calibrated for
each basis function. Additionally, the term ag+ibg+z(a;+ib,) is
added to the basis functions to increase the accuracy of the model.

The use of the complex monomial basis functions 1 and z
improves modeling capability because these monomials are part
of the CVBEM expansion resulting from using a linear trial
function interpolation in the numerical integration of the Cauchy
integral equation. It is noted that elimination of these complex
monomials will still result in a complex analytic approximation
function. It is also noted that had a higher order interpolation
polynomial been used in the numerical integration of the Cauchy
integral equation, a higher order set of complex monomials would
result in the CVBEM formulation (see [3]).

For N nodal points defined in the approximation function, there
are 2N+4 real-valued coefficients to be determined. The rule used in
the current work is to equate the approximation function to the
known boundary condition values at 2N+4 “evaluation points”
located on the problem boundary. The resulting CVBEM approxima-
tion function will therefore match boundary conditions at each of
the 2N+4 evaluation points located on the problem boundary, and
the real and imaginary components of the CVBEM approximation
function will both satisfy the LaPlace equation within the entire
problem domain and also on the problem boundary (for the
situation where all nodal points and associated branch-cuts are
located exterior of the problem domain union boundary). This
approach for evaluating basis function coefficients differs from the
usual CVBEM collocation approach, where coefficients are deter-
mined at nodal points in the limit, and nodes are defined on the
problem boundary. Again, in the current work, all nodes are
displaced away from the problem domain union boundary.

In locating nodal points, it is advantageous to locate nodes
outside the problem domain. This is because the CVBEM basis
functions are products of complex polynomials and complex
logarithm functions (developed from the Cauchy integral numerical
solution, see [3]) and therefore the complex logarithm functions
involve branch-cuts that cause discontinuities along the branch-
cuts. Locating nodes outside the problem domain (i.e., along the
problem boundary or outside the problem domain union problem
boundary) removes the complex logarithm branch point (located at
the node) from the problem domain, and by rotating the branch-cut
to lie exterior of the problem domain union boundary results in the
CVBEM approximation being analytic throughout the problem

domain. In the examination of node locations exterior of the
problem domain union boundary, estimation of resulting approx-
imation error in matching problem boundary conditions is used to
locate node locations where the total absolute value of error is
minimized in matching boundary conditions integrated along the
problem boundary. Because error is a maximum on the problem
boundary, such an error assessment bounds the modeling error in
the problem domain itself. In the current work, node locations are
examined by trial and error until a minimum value of total error on
the boundary is achieved. Then, holding the target node fixed, the
next node is introduced and its location determined by trial and
error, for positions on and exterior of the problem boundary.

Error analysis proceeds by assessment of goodness of fit between
approximation function values evaluated on the problem boundary
versus boundary condition values defined over the entire problem
boundary. Because of the collocation technique being used, there is
no error in matching boundary condition values at the 2N+4
evaluation points. Furthermore, there is no modeling error in
satisfying the governing partial differential equation (i.e., the LaPlace
equation or many forms of the Poisson equation) throughout the
problem domain because the approximation function is analytic
over the entire problem domain (this feature of the CVBEM is not
achieved by domain methods such as finite difference or finite
element). Boundary condition values can be evaluated continuously
and exactly for the approximation function over the entire problem
boundary for direct comparison to the given boundary condition
values. Additional interpolation is not needed. Because of the
Maximum Modulus Theorem, the maximum error of approximation
throughout the problem domain and boundary occurs on the
problem boundary when using the CVBEM, and therefore only the
problem boundary needs to be assessed in order to evaluate
modeling error magnitude. (Other methods to reduce modeling
error include least-squares type minimization, which is a topic for
future research).

In the following, further details of the implementation of the
above procedures are presented along with Mathematica code
and example problems. Graphics are presented using program
Mathematica, demonstrating the convenience afforded by pro-
grams of that type. Other such programs include, but are not
limited to, MatLAB and Maple, among others.

2. Problem formulation

Given a two-dimensional simply connected domain enclosed by
a simple closed contour boundary, “N” CVBEM basis function nodes
are defined in the exterior of the problem domain union boundary.
Branch-cuts are located for each node to lie in the exterior of the
problem domain union boundary. Holes in the problem domain or
other such non-homogeneities can be handled as is accomplished in
the usual CVBEM [3]. For N nodes used in the CVBEM approximation
function, 2N+4 evaluation points are located on the problem
boundary (which contains no nodes). For presentation purposes,
the LaPlace equation is assumed to be applicable with only
boundary conditions of the potential known. (Flux type boundary
conditions or stream function boundary conditions can also be
assumed in this modeling approach, involving both the real and
imaginary components of the CVBEM approximation function.)
Since we know only the potential boundary conditions, the solution
of the flux will be left with some arbitrary constant, b, which here
will be assumed to be zero. This will reduce the number of
evaluation points needed to 2N+3. The relevant boundary value
problem satisfies the LaPlace equation over the problem domain
with the potential function values given on the problem boundary.

At each evaluation point location, the value of the potential is
given as a boundary condition. The modeling procedure now moves
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Fig. 1. (a) Exact solution of z? representing ideal fluid flow around a 90° bend. The real portion of the function (equipotential lines) is shown by the shaded contours.
The imaginary portion (streamlines) is shown by the solid lines. The black box represents the problem domain for the CVBEM approximation. (b) CVBEM approximation of
the function z2. White dots represent the evaluation points where the approximation is forced to match the function. Black dots represent the nodal points and the white
lines represent branch-cuts of the logarithms (note: the evaluation points all lie on the problem boundary shown in Fig. 1(a). (c) Error in the potential function along
the problem boundary in a counter-clockwise direction. The maximum and minimum magnitudes of error occur along the boundary as guaranteed by the Maximum

Principle.

towards solving a matrix system to determine the 2N+3 CVBEM
real-valued coefficient components by collocating the approxima-
tion function to equal the boundary condition values at each of the
2N+3 evaluation points. After solving the square (2N+3) x (2N+3)
matrix system, the real-valued coefficients are substituted back into
the underlying CVBEM approximation function, resulting in an
analytic function defined over the problem domain union problem
boundary. Furthermore, these same 2N+3 coefficient real values can
be directly used to develop the conjugate stream function, for use in
developing flow nets and other graphical plots. Further information

on the CVBEM formulation is provided in the following discussions
of the included program Mathematica code, demonstrated by
example problems.

3. Mathematica code development

Previous methods of implementing the CVBEM have translated
the basis functions into a polar coordinate system. Since
Mathematica has many built in features to handle functions of
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Fig. 2. (a) Exact solution of z2+z~2. This problem represents ideal fluid flow around a cylinder in a 90° bend. The real portion of the function (equipotential lines)
is shown by the shaded contours. The imaginary portion (streamlines) is shown by the solid lines. The cylinder is located at the origin and has a radius of 1.
(b) CVBEM approximation of z>+z~2. Dots around the problem boundary are collocation points. (c) Error in the potential function along the problem boundary. The

maximum error across the entire domain is 0.0798 units.

complex numbers, the basis functions are easier handled in a
rectangular coordinate system. In order to be able to leave this
function in rectangular coordinates and still rotate branch-cuts to
ensure that our entire domain remains analytic, we must apply a
rotation at each node. This is accomplished by making a
substitution for each x and y variable within the summation:

X =xcos 0-y sin 0
y =xsinf+y cos 6

This function is then expanded into its real and imaginary
components using the ComplexExpand][] function. In order to get
the solution specific to our problem, we must now evaluate the
function at the locations where our boundary is known and then
solve for our coefficients. This is done through generating tables
and then using Mathematica’s ability to solve matrices.

In order to use this code, the user must simply manipulate the
arrays that appear in the first several lines of the code. The first array
of points represents the coordinate of each node and the second
represents the angle at which the branch-cut is rotated in a counter-
clockwise direction from the negative x-axis. The third array of points
is the location at which the boundary is to be evaluated. The final
array represents the boundary values at these locations. The full
Mathematica code is found in the appendix.

3.1. Language advantages

Mathematica contains a very powerful symbolic language.
This can be leveraged to make an almost entirely symbolic
evaluation of the CVBEM and leave the problem in rectangular
coordinates. Previous implementations of the CVBEM have
instead transformed the domain into polar coordinates. It is
also very easy to manipulate functions and matrices in
Mathematica. The combination of these two features makes
symbolically evaluating the approximation point at each
evaluation point a very simple task. Once the appropriate
matrices are formulated, Mathematica’s built-in functions for
solving linear equations can be utilized to obtain a solution for
all the necessary coefficients.

3.2. Output features

Perhaps one of the most powerful features of Mathematica is the
tools it contains to visualize data. Through very simple commands,
Mathematica can create many different types of plots of functions
with one or two independent variables. Mathematica also makes it
very easy to manipulate plots and add features to them. Two very
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Fig. 3. (a) CVBEM solution modeling ground water levels based on bore readings around the boundary. White dots represent locations of bore readings, which is where the
collocation points occur. Black dots represent the locations of the nodes (note: collocation points all lie on the problem boundary and nodes lie outside the problem domain).
(b) Potential values along the boundary as modeled by the CVBEM (grey) and the CPM (black). The model differs by no more than two units across the entire domain.

powerful features that are useful in visualizing solutions found via
the CVBEM are the contour and density plots, which it can create.

4. Example problems
4.1. Problem 1

The function z?, which exactly represents ideal fluid flow
through a 90° bend, will be analyzed in the first quadrant using
the collocation CVBEM presented. The problem domain is a unit
square with corners at (1,1) and (2,2). For this example problem,
19 evaluation points are specified along the problem boundary
where boundary conditions are matched, and 8 CVBEM basis
functions (as described above) are used in the CVBEM analog. This

means that 8 CVBEM nodes and branch-cuts are used in the
model. Figs. 1a-c show the various details of the CVBEM model.

The effect of the logarithm branch-cuts (as discontinuities) can
be seen in the region located exterior of the problem domain. It
can also be seen that within the problem domain, streamlines and
equipotential lines and corresponding values are known con-
tinuously throughout the problem domain as well as on the
problem boundary. Furthermore, the CVBEM approximation
function exactly solves the governing partial differential equation
(LaPlace equation) throughout the problem domain. Because the
CVBEM approximation is a function defined throughout the entire
plane, the approximation function values are known continuously
along the problem boundary, which enables a direct comparison
to be made with the problem boundary conditions. Flux values
can also be directly determined anywhere in the problem domain
and on the problem boundary using the Cauchy-Riemann
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equations to compute normal flux as the gradient of the
approximation stream function.

Since ¢(z) and c},’)(z) are both real components of respective
analytic functions, they are both two-dimensional real-valued
harmonic functions over the entire problem domain and therefore
the Maximum Principle (analogous to the Maximum Modulus
Theorem for analytic functions) applies. Because the difference
¢(z)—<2>(z) is also a harmonic function in the problem domain, the
Maximum Principle applies and therefore the maximum error of
approximation occurs on the problem boundary, I'. A good way to
visualize the amount of error in the function is therefore to look at
the error along the boundary. Fig 1c shows the error in the
potential along I' moving in a counter-clockwise direction
starting at (2,1).

4.2. Example problem 2
The function z2+z~2 represents ideal fluid flow around a
cylindrical corner. The CVBEM approximation model used in
Example 2 is based on the same number of evaluation points,
nodes, and branch-cuts as used in Example 1. Figs. 2a-c show
various details of the model.

4.3. Example problem 3

The CVBEM can also be used to solve much more complex
problems. In this problem, taken from the Journal of the Professional
Geologist [4], the CVBEM is used to model a groundwater basin
where several ground water supply wells are in use. The ground-
water flow within the domain is assumed to be homogeneous and
isotropic. Non-homogeneous or anisotropic properties can be
accounted for by re-scaling or solving simultaneous sub-problems
(see [3] for examples). Once groundwater levels are found from
groundwater wells located along the problem boundary, the CVBEM
can be used to approximate the ground water levels within the
domain.Fig. 3a shows the result of this approximation. In this figure,
the white dots represent the well sites and the black dots represent
the nodes. Lighter colors represent higher water levels.

Fig. 3b shows the water levels along the boundary as found by
both the CPM approximation presented in the journal and the
CVBEM presented here. The differences between CVBEM approx-
imation values and known boundary condition values of ground-
water levels evaluated along the problem boundary are the largest
when CVBEM nodes are located on the problem boundary (CVBEM
nodes should be located on the problem boundary or exterior of the
problem boundary union domain in order to avoid branch-cut
discontinuities). This difference in modeling versus known boundary
condition values can be readily reduced by simply moving the
CVBEM nodes to be exterior of the problem domain union boundary
when constructing the CVBEM approximation function. However, in
order to show maximum modeling error in this paper, the CVBEM
nodes are placed on the problem boundary, which provides a more
informative assessment of CVBEM modeling error (if nodes are
specified on the problem boundary). Furthermore, the CVBEM
modeling error in matching boundary condition values is due to
the internal approach used in Mathematica in handling the product
of the functions (z—z) and Ln(z—z;). Mathematically, L’'Hopital’s
Rule can be used to derive the limiting value of the product
(z—zj)Ln(z— z;), which results in no similar modeling error at nodal
points. However, the product itself is not evaluated in this manner in

the limit by the computer software, and therefore the modeling
error manifested is due to the software.

5. Conclusions

The complex variable boundary element method (CVBEM)
is extended for using collocation points not located at the
usual boundary nodal point locations. The CVBEM is improved
to vary in location, impacting the modeling accuracy depend-
ing on chosen node locations. The CVBEM basis function
complex coefficients are determined by collocation at evalua-
tion points defined on the problem boundary in-between the
CVBEM nodal points, which is an advancement over the usual
collocation approach of using limits at nodal points defined on
the problem boundary. A further advancement is the imple-
mentation of these CVBEM modeling features on computer
program Mathematica. Example problems are provided that
demonstrate this new CVBEM procedure. Mathematica code is
also provided, showing the brevity of programming require-
ments.

Further research is needed in a variety of areas, inclu-
ding different methods for assessing and reducing mod-
eling error in matching problem boundary conditions. One
particular method that appears to be most promising is
the graphical demonstration of modeling error in matc-
hing boundary conditions by the “approximate boundary”
technique [3]. Program Mathematica may be particularly
useful in assessing error by the approximate boundary
approach due to the available graphical options inherent to
that program.
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