The Log-Pearson III Distribution in Hydrology

R. J. Whitley * T. V. Hromadka II * M. J. Smith, ¥

Introduction

The procedures recommended for flood-frequency analysis by U. S. federal agen-
cies and in general use in the United States are those given in [23], a reference
which is commonly referred to as (Bulletin) 17B; also see [39], [31], [24], and
[15]. In 17B the log-Pearson III distribution was adopted for yearly maximal
discharges, this choice is discussed in appendix 14 of 17B, and see the com-
prehensive [15]. This chapter discusses the basic properties of this distribution
which are needed for applications.

The Probability Density

The Pearson family of probability distributions is discussed in {25, Chap. 6].
The density for the Pearson 111 distribution has the form

_ [(t_c)/a]b_l —[(t—=c¢)/a
f(t)_W—e (E=e/al for (t — ¢)/a > 0, (1)

T'(b) the gamma function, and f(t)=0 for (¢ — ¢)/a < 0 and with a # 0.

A random variable Y has a log-Pearson I1I distribution if logY has a Pearson
111 distribution. The same distribution results no matter which logarithm base
is used and showing this will also establish other useful results. The formula for
change of logarithm base from b to a is log, (t) = log,(b) logy, (t). The fact that
the derivative of log,(t) = log,(e)/t has the simplest form for a = e explains
why base e is chosen for logarithms in mathematics, although base 10 is often
used for engineering data. This common use of two different bases is why the
stability of the log-Pearson distribution under a change of base in the logarithm
is important.

In the following fy(¢) will denote the probability density of the random
variable Y and Fy(t) = Prob(Y < t) the (cumulative) distribution function.
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Suppose that logy, (Y) = X has a Pearson III distribution. Then

log,(Y) = log,(b) log,, (Y).

A base for a logarithm is positive and greater than one, so in the above a =
log, (b) > 0, and log, (Y) = aX. Then

Fax(t) = Prob(aX =t)= Prob(X < i)
o
Differentiating,
1 t
ax(8) = = fx(=).
fax(1) afx(a)

It will be useful to also determine the distribution of X for a < 0. In this
case

Fux(t) = Prob(aX <t) = Prob(X >t/a) =1 Prob(X < ta).
Differentiating,

1 L

£) = ——fx(=).

fax(t) = —=fx(=)

In either case, fox(t) = ﬁfx(é) and

[(t — ac)/aa]>~?

fax(t) = el (0) exp (—[(t — ac)/aa]) for (t —ac)/aa >0,

which shows that aX has a Pearson 111 distribution with ¢ and a multiplied by
« and b unchanged.

Moments

The first three moments of a Pearson III distribution suffice to determine the
density by determining the three parameters a,b, and c.
The relations between the mean u, standard deviation o, and skew v are

U= c+ ab,
02 =d%
v =4/b

where a and v have the same sign. The parameters can be obtained by finding
the first three moments of X. It is easier to work with
X —-c

7="%. (2)

To obtain the density of Z, first consider the case @ > 0: Fz(t) = Prob(Z <t) =
Prob(X < ¢+ at), and by differentiating fz(¢) = afx(c+ at). If a < 0, then



F,(t) = Prob(X > c+at) =1- Prob(X < c+at), and fz(t) = —af(X(c+at).
For both a > 0 and a < 0,

F2(8) = lal fx (¢ + at) = ——tP=Le=t for £ > 0 3)
'(b)
and fz(t) = 0 for t < 0. Thus Z has a gamma distribution with parameter b.
[34]. (In general a gamma distribution has two parameters, but in the case here
the other parameter is 1.)
The moment generating function for Z, ¢z (A) is [34]:

1 hd 1
bz(\) = E(e*?) = W/o eMtt~le™t dt = a0 (4)
Note that, as is usually the case, the moment generating function is not defined
for all A but for ”small” lambda, in this case for A < 1. The first three moments
of Z follow easily from the recursive formula I'(b+1) = bI'(b), an equation which
shows that for n an integer, I'(n+1) = n!. The moments are: E(Z) = ¢'(0) = b,
E(Z%) = ¢"'(0) = b(b+1), and E(Z%) = ¢'"(0) = b(b+1)(b+2). Using equation
(2),
p=ab+c.

Since E(X?2) = a?b(b+ 1) + 2ach+ ¢2,
% = a%b,
and X has standard deviation ¢ = |a|v/b. A similar computation shows that

E[(Z - b)3] = 2b, from which E[(X — u)%] = E(a®(Z - b)) = 2a3b, which, using
the formula for the skew, gives:

Ei{(X — n)?] 2a3b a 2

YT T aveE Jd Vb

So the parameter b is related to the skew v by b = 4/+2, and since the factor
sgn(a) = |Z—| is 1 if @ > 0 and is -1 if @ < 0, the skew has the same sign as the
parameter a.

Zero Skew

In the important case of zero skew the distribution, by a limiting argument, will
be shown to be a normal distribution. The easiest proof is by the use of moment
generating functions. Let W be the random variable Z scaled by subtracting
its mean and dividing by its standard deviation, so that W has mean zero and
standard deviation one:

W = (Z - b)/Vb.

Consider the moment generating function for W:

AW — B(X ZE—A\/(b) cAVD)Z :e—x\/(b) __/\_ -b
B(eW) = Be) = e VO B ) -2



Write
A

Vb

and use the three term Tayor’s expaunsion for log(1 + x)

(1 _ )_b _ ewblog(lf—\;‘—g)

2 3

log(l+z) =z~ % + J%(1 +7)73, for some 7, 0 < |7l < |z| < 1
at z = % to see that .
Jim g (X) = /2 (5)

The right-hand side of (5) is the moment generating function for a normal dis-
tribution with mean 0 and standard deviation one [34]. Applying the continuity
theorem from probability [5] shows that X approaches N(0,1) in distribution as
b tends to infinity. Since X=aZ+c¢, X tends to a normal distribution with mean
c and standard deviation [a, as b tends to infinity.

T-year Flood

With yearly maximal discharge for a catchment being modeled by a log-Pearson
IIT distribution, the quantities of interest—in fact the main reason for modeling
the discharge-are the values y, of the T-year flood, 1 < T < oo. For a given T,
Yp 1s the p-th percentile of Y, i.e. the value with
1

Prob(Y <y,)=p=1- 7
A commonly used value of T is T' = 100, with y g9 the value for the 100-year
Hood. The estimation of y, is done by estimating the T-year value z, for
X =log, Y. Because log,(t) is an increasing function of t,

p = Prob(X < z,) = Prob(log,Y < z,) = Prob(Y < a®»)

showing that y, = a*». Perceuntiles for the Pearson III distribution were com-
puted in [18], [19], [20].

These percentiles can be readily obtained from percentiles for the Gamma
distribution. Let z, be the corresponding percentile for Z = Xa_c; Prob(Z <
2p) = p. The relation between z, and z, depends on the sign of a. First suppose
a > 0, then

p= Prob(X <y,) = Prob({(X —c)/a] < [(z, —c)/a]) = Prob(Z < [(z, ~c)/d])

from which we see
zp = (xp —¢)/a for a > 0. (6)

Next suppose that a < 0, then

p = Prob(X < z,) = Prob([(X —c¢)/a > [(x, — ¢)/a]) = Prob(Z > [(z, ~ c)/(a’;g



Prob(Z < [(z, -~ o) /fa]) = 1 — p

and
z1—p = [(zp — ¢)/a] for a < 0,

Estimation

Bulletin 17B [23] requires the use of the method of moments to estimate the
parameters a, b, and c, which works in the following way: If the year maximal
discharges are {y1,2,...,yn}, take logarithms to get {x; = logay1,...,Zn =
logay,}. (This is a simplification as there is some data processing, for example
for outliers, which is ignored here.) The usual estimators: ji for the mean, & for
the standard deviation, and ¥ for the skew are:

i=1
where the factor of ﬁi—l is chosen so as to have an unbiased estimator, and
n A\3
A Zizl(xi — 1)
[
)

Note that the use of an unbiased estimator for the standard deviation (e.g. the
estimator & having a factor of n — 1, not n, in the denominator, which is done
to have the expectation of the estimator equal the quantity being estimated) as
in [23, pg. 10], is not generally considered to have particular importance [6, pg.
61|, and is sometimes done and sometimes not done, which can lead to a certain
amount of confusion. The estimator of [23] for the sample skew differs from the
one given here for the same reason.

Using the relations between the moments of the Pearson III distribution of
X and the parameters a, b, and ¢, these parameters are estimated by

-4
b = ﬁ’
Y
¢ has the same sign as 4 and
2 _ 0
b
and .
¢= [ —ab.

For the special case of zero skew v (¥ zero or ”small”), the first two moments
are the usual estimators for the parameters ; and o2 of a normal distributiorn.



An interesting property of the estimator for the skew is that it is bounded
by a simple function of the number of data points n and independent of the
size of the skew [26]. This result was derived in response to some simulations
which had results he describes as ” profoundly disturbing”. To understand what
was disturbing, consider the random generation of a Pearson III with positive
skew, b=.01, and using n=100 point samples, and computing the sample skew
each time. When done repeatedly an empirical distribution of the sample skew

statistic is obtained. The skew for this distribution is 4/ ,;iz = 20 whereas, using

the bound below, the sample skew can be no larger than 10 which is far from
the true skew. Such extreme skew values are not used for floods: the skew map
in [23] has 97% of the skews in the range [—1,1] and all in the range [-2,2].

Here is an easy derivation of a good bound, but not the best bound, on the
sample skew. The estimators used are: Sample mean

== (@i - )’

and skew | —n .3
o wi (@ — )

’Y - 6'3 .

The difference between these estimators from [24] and those used in [23] are
various fudge factors; in [23], as noted above, for & there is a factor of FZ%T not
L. For the skew, let S = > "7(z; — )2 and SC = 3 7 (x; ~ f1)%, the estimator
in [24] is

S5C

583

nvn—1 SC
n—2 §§%°

The somewhat strange factor for the 17B skew is used to have an unbiased
estimator for E(X — p)® and ”reduces but does not eliminate the bias of 4" [31,
18.5]. The example above, with a skew of 20 but a sample skew less than 10,
shows that the expectation of the sample skew is certainly not the true skew,
and that the bias can be considerable.

In S—CZ% if each x; — i1 is multiplied by o > 0 the fraction remains unchanged;

do this with o = 4/ —Slg, so that
SC Soud

Vvn

while [23] uses

S5% (Lud)t’
where |u;| <1 and > u? =1, thus |u;[> <42 and the above sum is bounded by
1. Thus with the estimators of [24]

14 < Vn.



This argument is quite a bit easier than [26] but he gets the bound

n—2
vn—1

which is better than the bound above and in fact is best possible.

11 <

Uncertainty in Estimation

All statistical estimation involves uncertainty, but the estimation of the T-year
flood is more uncertain than most estitnations. The basic problem is that the
estimate for the T-year flood is obtained by first estimating the parameters of the
distribution, then, letting X denote the random variable obtained using these
estimated parameters, finding the value £, for which Prob()z' <&y)=p= 1—%,
a point which for larger values of T is far out on the tail of the estimated
distribution. Then, a step which further amplifies any error, exponentiating to
get §, = a®», where a is the logarithm base used to transform the log-Pearson
I1T random variable Y to the Pearson I1I random variable X by X =log, Y.

Typically, statistical variation in estimation is described by the use of con-
fidence intervals. A form of confidence interval that has great relevance for the
estimation of T-year floods is a one-sided confidence interval.

The case of zero skew is well-known as it corresponds to X a normally dis-
tributed random variable. Let z, be the true value for the T-year flood Pearson
III random variable X and, as above, %, the value obtained by the estimation
procedure above. The relevant fact about a normal distribution with mean u
and standard deviation o is that

has a known distribution, the t-distribution. In this case a 100¢% confidence
level, 0 < ¢ < 1, for the mean can be obtained as follows. Think of sampling
independent points from a normal X with unknown parameters p and ¢, and
obtaining as above estimates ji for the mean and & for the standard deviation.
For a given q, 0 < ¢ < 1, let ¢; be the value of the t-distribution with the
property that

Prob(T <¢;) =gq. (9)

Consider an independent sample of n points from the normal distribution X.
For each sample a value 7 is obtained. From equation (9), 100¢% of the time

w< it ey

In hydrologic terms, when the procedure described—estimate the mean and stan-
dard deviation using the given formulas, choose ¢ and thereby c¢,~ is followed,
the estimate i + c,& will give a value that is greater than or equal to the true
(unknown) mean, 100¢% of the time, the mean being the T=2 year flood for
the normal distribution. That is, this procedure provides protection from the



2-year flood 100¢% of the time when used repeatedly. The value q can be choose
to provide the protection required or that which is affordable, 100% protection
being impossible in this model.

The key point here is that equation (8) provides a random variable 7 which
has a known distribution that does not depend on the parameters u and o of
the underlying normal distribution X.

The same general approach will provide a 100¢% confidence level for the
T-year flood value z, for a normal distribution, the difference is that in the case
T # 2 the random variable

Ty, — fi

G

does not have a t-distribution, but does have a known distribution, the non-
central t-distribution [33].

Note that the confidence level depends on the choice of the random variable
T, the estimators used in 7, as well as the distribution from which z,,...,z,
are sampled.

Consider the case where X has a Pearson 111 distribution with non-zero skew.

For X with this distribution, let Z = (X - ¢)/a Suppose that we have n
independent samples of X, X1, Xo,...,X,,, with corresponding Z;, Zs, ..., Z,.
Consider the sample means:

iz = =3 (X = /) = (fix - I

For the sample standard deviations

T

. 1 . S
o = =3 (X~ &)/a— (iix — O)falf = 6%
1
So then )
0z = —0x ifa>0
a
and 1
67=——0x ifa<0
a
First from (6)
pr_/»LX :ZpA_HZ for a > 0. (10)
Ox gz
while from (7)
Tp _BX _HZ" F7p o1 g < 0. (11)
ax (o84

Any application of these equation will use the fact that a and the skew have the
same sign.

As shown in (3) Z has a gamma distribution with parameter b. Thus, by
considering 7 the parameters a and ¢ have been eliminated from cousideration.



Known Skew

It has long been known that the procedures suggested in [23] for the calculation
of confidence levels are not accurate [35]. These confidence levels depend on the
procedure used and, if using the method of moments, on the variation in the
estimators for the mean, standard deviation, and skew. This full problem, to be
discussed below, is difficult but some insight can be obtained from the simpler
problem which ignores the variability in the estimation of the sample skew.
The equations (6) and (7) allow the calculation of confidence levels under the
simplifying assumption that value of the site skew is known exactly. Even in this
case, the distribution involved is too complicated to be able to compute a density
from which a confidence level could be calculated. An approximate formula, best
used for small skew, has been derived in [35], and see [40]. More accurate values
can be obtained from simulations and this was done in [41]. These simulations
were applied in [21]. These calculations were redone recently [22] to incorporate
the larger data sets now available, applying the same ideas but with faster
simulations which give higher accuracy. The simulation approach to confidence
levels in the case of known skew involves simulating the distribution of the right-
hand sides of (6) and (7), which are too complex to have known densities. Using
these equations, simulations can deliver accurate values for constants K (N, ~, c)
for which
Prob(z, < ix + 6xK(N,v,¢) =c¢ (12)

is approximately true with error in the fourth decimal. This is to say that
equation (12) displays a 100c% confidence level for the unknown value z, of
the T-year flood, p — % That this can be done is clear in principle but was
impractical at the time 17B was written. To give an idea of the change in readily
available computer power, a remark made in {40] can be used to estimate that
a program which would have taken 40 hours using the personal computers and
software of 20 years ago, would now take about 10 seconds. The computer
programs for the simulations were compiled with a Lahey/Fujitsu Fortran 95
compiler using the IMSL software library. The simulations involved for a specific
T-year flood take, in the case of N=>50 data points, approximately three minutes.
An accurate value for the constant K(N,+y, ¢) is obtained by a simulation of the
right-hand side of (6) or (7) in which an empirical histogram is used to obtain
percentiles corresponding to the desired K values. After the values of K have
been calculated, they are tested using a completely different random number

generator from that used in the simulation.

Estimated Skew

The problem of finding confidence intervals which incorporate the uncertainty
in the estimation of the mean, the standard deviation, and the skew is more
difficult than the model problem of the last section in which the skew is taken
as known. On difficulty is that {23, pg. 11] recommends the weighting of the site
skew with other site values or using a map of skews [29] and [30]. It is impossible



to test these methods without additional assumptions concerning the regional
distribution of skews, a subject on which [23] is silent. The method of choice
for most statisticians would be maximum likelihood [10], but at the time it was
considered too difficult to use in a consistent way throughout the United States;
this may no longer be the case if it were implemented in a program supplied
by, say, the Army Corp of Engineers. Some proposed methods include [11],
as discussed in [42], and a neural network approach [43]. A method that has
been much studied recently [7],(8], [9], [12], [13], [16], [32], [37] is an iterative
method which allows the incorporation of historical events, as does the method
of maximum likelihood. This is an active area of research and the reader is
directed to the quoted references; a convenient source for which is {36].
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