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Preface

Complex variable boundary element method

Since its inception by Hromadka and Guymon in 1983,
the Complex Variable Boundary Element Method or
CVBEM has been the subject of several theoretical
developments as well as numerous exciting applications.
The CVBEM is a numerical application of the Cauchy
Integral theorem of complex variables, to two-dimensional
potential problems involving Laplace or Poisson equations.
This attribute of the CVBEM is a distinct advantage over
other numerical techniques that develop only an inexact
approximation of the Laplace equation.

During the years 2000 and 2001, publications that
extended the two-dimensional CVBEM to three or even
higher dimensions appeared, including a book published by
the WIT Press (A multi-dimensional Complex Boundary
Element Method, T.V. Hromadka II, ISBN:1-85312-908-9)
that provides a complete presentation of the development
and application of the multi-dimensional CVBEM. Theo-
rems that proved the convergence of the multi-dimensional
CVBEM to the solution of the problem and also that
provide the pathway towards modeling three or more
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dimensions using two-dimensional basis functions of real
or complex variables were developed.

In this Special Issue of Engineering Analysis with
Boundary Elements, several advances and new contribu-
tions to the CVBEM are presented. Also included is a
discussion of possible future research topics. One impor-
tant future research topic is the extension of complex
variable analytic function theory from two-dimensions to
multiple dimensions.

In my own review of these papers, I see a bright future
for increased research activity in the CVBEM and
extensions of those results to the real variable boundary
element methods.
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Abstract

A review is given of complex variable based numerical solutions, CVBEM methods, for Dirichlet potential problems in two and higher

dimensions.
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1. Introduction

The foundations of the complex variable boundary
element method (CVBEM) are of particular interest
because of its usefulness in the numerical solution of a
variety of applied problems [1,2]. This paper is a review of
the theoretical developments of the CVBEM which show
that problems of Dirichlet-type are solvable to within an
arbitrarily small preassigned error by use of this method,
which extends the method to a larger class of planar
problems with a more general type of approximating
functions, and which extends the method to problems in
higher dimensions.

2. The Dirichlet problem

Consider a basic Dirichlet problem: Let  be a bounded
simply connected domain in the complex plane with
boundary I' and let g be a real-valued continuous function
defined on I'. The unique solution to this Dirichlet problem
is a function u(z), harmonic in € and continuous on QU I
with u(z) = g(z) for all zon I'.

The CYBEM method furnishes an approximate solution
to this problem if given £>0, there is a function A(z) of
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“CVBEM-type” which is analytic in Q, continuous on
QUT, and satisfies

[Reh(z) — g(z)|<e forallzonT, ¢}

for then ReA(z) is harmonic in  and, by the Maximum
Theorem, is within ¢ of the exact solution on all of Q.

This was shown to be the case in [I, Chapter 6] under
very restrictive conditions on the boundary I and on the
boundary value function g. In [3] it was shown to hold for
the class of CVBEM functions described below and for a
piece-wise smooth boundary: a simple closed curve of
finite length with at most a finite number of corner points
which are not cusps. This result easily extends from the
supremum norm implicit in (1) to integral norms on I’
which are useful in treating discontinuous boundary
functions.

The original class of CVBEM functions have the form

N

h(z) =ao+az+ Y calz — By)logg (z — By, @)
n=1

where ag,a;,ci1,...,¢, are complex numbers and the

Bi»-.., B, are points on I'.

The subscript § occurring in the complex logarithms
logg(z — B) in sum (2) indicates a basic aspect of these
logarithms: for such a logarithm to be analytic in
requires a precise specification of its domain, which means
defining a branch cut, i.e. a non-self intersecting curve lying
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in the complement of QUTI, except for one end at a
point B on I, and joining that point to infinity.
This is discussed in detail in [4]. Although basically an
elementary matter, anyone doing numerical calculations
using f(z) = logg(z — ) should as a check numerically
integrate f(z) around some closed curves lying in © and see
that the answers are zero, as it is not entirely trivial to get
the argument of the logarithm correctly specified.

The proof in [3], which is technically complicated and
non-constructive, uses singular integrals of the form

u(z)
/1"2 5 dz

whose definition is analogous to that of the Cauchy
principle value on the real line in that one integrates over
all of I' excepting an arc cut out of the curve by a small
circle of radius r centered at f8, and then lets r tend to zero.
The use of these integrals gives a rigorous way of deriving
the CVBEM function (1) from the Cauchy  integral
formula, generalized to the case where f lies not in the
domain but on the curve I'. This is discussed, for example,
in [4-6]. The use of the CVBEM to give an approximate
solution requires a numerical determination of the coeffi-
cients agp, a1, Ci,- .-, Cn PB1»- .-, B, iIn Eq. (2).

The choice of the {;}) has been done on an intuitive
basis, putting more points where the I’ has sharper
curvature or where the boundary function g(z) changes
more rapidly. Since the problem is basically one of
integration, it is likely that there are ways of choosing
points, analogous to Gaussian integration, which give
better results, but this has not been investigated.

Basically, two ways of choosing the ag, a1, ¢y, . .
been used.

One way is to force the function to interpolate at the
points {f;}. This has been used in connection with the idea
of an approximate boundary [1,2] which is a way of
producing a domain (', with boundary I”, which is
geometrically close to £ and on which “the same”
boundary value problem has an exact CVBEM solution.
This idea has not been discussed in a rigorous way but
should be studied as it gives a concrete way of visualizing
the error in the numerical approximation. For example, if
the domain €' is within the construction tolerances for Q
there is little point in trying for a solution closer to the true
solution for Q. There are variations of this interpolation
method which do not require exact interpolation at the p’s.

The second way, which is the simplest in practice, is,
after the f’s have been chosen, find the least-squares fit of
Eq. (2) to the boundary data.

Since the error bound most often cited is the uniform
bound of (1), it would seem that coefficients chosen to
minimize that norm, rather than the L? norm correspond-
ing to least squares, would give a better uniform fit; some
unpublished work did show an improvement based on
sample calculations, but no comparisons have been
published.

., Cy have

3. The Dirichlet problem again

In [7] another proof is given, more direct than the proof
of [4], showing that the same Dirichlet problem (1) of
Section 2 above has an approximate CVBEM solution of
the type displayed in (2). While the main theorem is stated
for a twice continuously differentiable boundary I, that
requirement can be weakened at the cost of making certain
estimates more complicated. Many steps in this new proof
are constructive in the sense that an estimate can be given
for how many f’s in sum (2) are needed at certain stages of
the proof .

One question for all the methods discussed here is: given
£>0, what is a bound on the number of terms N in (2)
required to obtain (1)? Theorem 1 of [7] can be used to
answer this question only under the restrictive hypotheses
that the harmonic function which solves the Dirichlet
problem is the real part of a function which is analytic on a
larger open set containing Q U I'. An answer to the general
question would provide a way of quantifying the practical
efficiency of the CVBEM,; if the accuracy required in a
specific Dirichlet problem is & = .001, can you estimate
whether that will take a practical number n = 10 terms in
the sum or an impractical n = 10° before you begin the
calculations?

A device used in the proof is to move the nodes
{Bi,--.,Px} slightly outside the domain, which a technique
that has been used in computations.

4. Mixed boundary value problems

Mixed boundary value problems are variations of
the Dirichlet problem where a linear combination of the
potential and its normal derivative are prescribed on the
boundary. One source of mixed boundary value problems
is a heat flow problem in which the temperature is
prescribed on part of the boundary while the remaining
portion of the boundary is insulated. Another source is a
problem concerning fluid flow around an obstacle; the
obstacle is represented by a hole in the domain Q which,
unlike the domains considered up till now, is then not
simply connected.

Consider a planar fluid flow problem with

H(z) = ¢(2) +1Y(2) (©)

being the complex potential for the flow with ¢(z) the
velocity potential. Applying the Cauchy—-Riemann equa-
tions

H'(z) = ¢ (2) —id,(2) “
and the right-hand side is the conjugate of the velocity
field V.

For simplicity consider the case where the boundary I' is
divided into two disjoint pieces I’} and I, and it is
required to have the potential ¢(z) equal to a given real-
valued function g,(z) on I} and the normal derivative
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equal to a real-valued function g¢,(z) on I';:

H(z) =g,(z) forzonly, (5)
ag’(f) = g,(z) for z on I'y. 6)

Note that the normal derivative of ¢ is the dot product
Vé(z) - n(z) where n(z) denotes the outward pointing
normal to I' at z. To be able to approximate both ¢ and
its gradient it is necessary to broaden the class of CVBEM
functions. Instead of the usual functions

14 =~ Blogy(z ), )
consider

Yy e
0= o - p - E2F ®

the derivative of Fp(z) being f(z). The appropriate class
of functions for a mixed boundary value problem turns
out to be

N
H(z) = ay +dyz +d. 2> + Z arFp (2). )

n=1

The first theorem in [8] applies to the same class of

domains as in [7], 2 a simply connected domain with a
piecewise continuously differentiable boundary of finite
length with at most a finite number of corners which are
not cusps. It states that if ¢ is a function harmonic in Q
vith gradient V¢(z) continuous on Q U I', then given ¢>0
there is a function H(z) of the form given in (9) with

IRe H(z) — p(z)| <e (10)
and
|H'(2) — V$(2)| <e, (11

both holding for all zin QUT".
One way to use this theorem to approximate the solution
of (5) and (6) is to think of minimizing

(Re H(z) — g1(2))*| dz| + / (H'(2) - n(2) — g2(2))*| dzl.
I I
(12)

Then the least-squares equations to determine the coeffi-
cients of H(z) are obtained by setting to zero the partial
derivatives of (12) with respect to the real and the
imaginary parts of the coefficients in H(z).

Another way to determine H(z) is to choose {zi,...,Zm,}
on I'y and {z},...,z,,} on I, and consider the discrete
version of (5) and (6):

Re H(z;)) = g,(z;) forz;on I, (13)

H'(z)) - n(z;) = g,(z}) for z; on I'p. (14)

€ these equations are overdetermined they can be solved in
<he least-squares sense.

The hypotheses that both ¢(z) and V¢(z) be continuous
on I is physically clear for most applications, but

oversimplification in modelling can create discontinunities.
One such oversimplification is the formulation given in
(5) and (6); a continuous version would write the boundary
conditions in terms of

A(2)p(2) + B(2)V(2), (15)

where a(z) and (z) varied continuously on I', rather than
with the jump discontinunities of (5) and (6). Examples are
given in [8] showing that rather innocuous appearing mixed
boundary value problems can have a solution which does
not have V¢(z) continuous on all of I'. Some of these
problems can be addressed by the use of integral norms
which allow discontinuities in the boundary conditions.

A mixed boundary value problem on a domain Q which
has m holes has an approximate solution H(z) satisfying (5)
and (6) which has the generalized CVBEM form

H(z) = Ho(2) + H, (z—loq) +...+Hm<z_1a > (16)

where each H(z) has the form given in (9) and g; is a point
inside the jth hole. For details see [8].

The practical aspects of use of the CVBEM functions of
this section to numerically solve mixed boundary value
problems need to be studied.

5. A general CVBEM method

Consider two facts noted above. First, the nodes {8;}
need not lie on I' in order to have a CVBEM-type sum (2)
give approximate solutions to Dirichlet problems. Second,
sums as in (9) can be used instead of the sums in (2) for the
numerical solution of Dirichlet problems, since that is a
special case of a mixed boundary value problem. These
facts raise the question of what functions can be used in
CVBEM-type methods. The surprising answer is that
practically anything will work, in the following sense [9].

Suppose that f(z) is a function analytic on some
neighborhood in the plane which is not a polynomial.
The solution to any two-dimensional Dirichlet problem,
with continuous data given on the boundary I' of a
bounded domain Q with connected complement, can be
approximated to an arbitrary degree of accuracy by sums
of the form

N
Re Y eaf (tnz + 20), (17
n=1

with zg, {¢,} and {a@,} complex numbers. The function f(z)
appearing in (17) could not be a polynomial (of degree m),
since then sum (17) would be a polynomial of degree less
than or equal to m and so could not approximate with
arbitrary accuracy the solution to Dirichlet problem which
had exact solution a polynomial of degree m + 1. But, as
the theorem states, anything else can be used!

It is a standard exercise [9] to show that for any analytic
function f(z) defined on a ball B(z;,r) which is not a
polynomial, there is a point zg in this ball with the property
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that neither f(z) nor any of its derivatives vanishes at zy;
the zp in (17) is taken to be such a point.

To establish the connection between sums (2) and (17),
begin by considering the function 1/z. Two integrations
give f(z) = —z + z log(z), where log(z) has as branch cut

the non-negative x-axis. For zp = —1 the functions
hy(z) = —(0z — 1) + (ax — 1) log(az — 1) (18)
are analytic on B(0, 1) for |o|<1.

Because
(z — B)logg(z — B) (19)
and

ﬁ(%z— 1) log(%z — 1) (20)

have the same second derivative, it follows that on a
common connected domain of analyticity these two
functions differ by a linear function of z. If QUTI is
contained in B(0, R), then for |B|> R, functions (19) and
(20) are both analytic on QU I'. Combining all the linear
terms which arise from the relations between these two
function, sum (17) can be written as

. N
oo + oz + Zoc,, (%z — 1) log(ﬁiz - 1> 2n
n=1 n n

mn direct correspondence with (2).

On aspect of the CVBEM sum (2) that does not follow
from the theorem of this section is that the nodes {f,} in (2)
can be chosen to lie on I', a result that depends on the
specific structure of the logarithm and which requires
curvilinear branch cuts if the domain is not convex. In
numerical work nodes are often placed on I'.

If a given Dirichlet problem has the property that the
boundary function g(z) is close to a second boundary
function and for that second function the problem has a
known solution Re f(z), then it seems likely that using that
function f in the sums as given by (17) would give better
numerical results than the standard sums (2). There has
been no work done comparing how either numerical or
theoretical properties of solutions vary with the choice of
the function f.

6. The Dirichlet problem in higher dimensions

It obvious that real-world potential problems are
generally three-dimensional, and only in very special cases
can they be reduced to a problem in two dimensions, to
which the CVBEM method as discussed so far be applied.
Not only can the CVBEM method be extended to problems
in higher dimensions, but this can be done using only
analytic functions of one complex variable. This is a
surprising result in light of classical examples, e.g. the
Lebesgue spine or thorn [10], which exhibits a three-
dimensional domain £ and a continuous boundary
function for which the corresponding Dirichlet problem
has no solution, and yet on any two-dimensional section of

Q any Dirichlet problem with continuous boundary values
can be solved.

Suppose that A(x, y) is a harmonic function defined on
the plane. How could it be used to construct a function
harmonic on R"? Let x = (x1,x2,...,X,), a=(ay,...,a,)
and b= (bi,...,b,) be points in R", taken with the usual
dot product. Compute the Laplacian AH(x) of H(x) =
h(a-x,b-x) as

h@-xb-x) @ +hn@-xb-x)y b
1 1

+2h(a-x,b-x) > asby. (22)
1

Observe that if the vectors a and b are chosen to have equal
length and to be perpendicular, then H(x) is harmonic in
R". This simple example turns out to be the basis for
extending the CVBEM to problems in R".

The most general conditions that a domain Q in R"
must satisfy in order that every Dirichlet problem with
continuous boundary data be solvable are complicated, but
a condition which is sufficient for most applied problems is
the Poincaré exterior cone condition, namely, that Q be an
open set in R” with the property that for each point § in its
boundary there 1s an open truncated cone K with vertex B
and K — f§ lying in R" — Q.

The main theorem of [11] is:

Theorem 1. Let f(2) be a function analytic in a disk D(zy, p),
where it is not a polynomial, we can suppose that neither f
nor any of its derivatives vanish at the point zy. Let Q be a
bounded domain in R", n>2, with R" — Q connected and
satisfying the Poincaré exterior cone condition at each point
of its boundary. Let g(x) a real-valued function on the
boundary I' of Q and ¢>0 be given. There are complex
constants o; and vectors & andV in R",j = 1,2,..., N, with

2 -V=0 and |d|=|V|<r, (23)
r chosen with
- x+ib -x|<p foralxinQ, (24)
50 that the corresponding function

N
h(x) =Re Y of (20 + (@ - x +ib - x) (25)

=1
is defined and harmonic on Q and it satisfies
|A(x) — g(x)|<e for x in 0R2. (26)

Consequently for all x in QU T, i(X) is within ¢ of the exact
solution u(X) to the Dirichlet problem with boundary data g.

Numerical applications of this theorem are found in
[12-15]. Criteria for good choices for the vectors {#/} and
{t/'} would be useful. Nothing has been published concern-
ing the numerical consequences of the choice of the
function f(z) in the theorem; most work has used the
traditional functions given in Eq. (2). Some comparisons
with other methods have been made but more needs to be
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done. The proof given is non-constructive, ultimately
depending on the non-constructive proof of [9], so it
:annot be applied to estimate the number N of terms in
(25) required to achieve the desired accuracy. These results
can no doubt be extended to mixed boundary value
problems, and to domains with holes, but this has not
been done.

The last theorem in [11] gives a particularly simple
characterization of harmonic polynomials, the conse-
quences of which have not been explored.
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