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Let ) be a bounded open set in R", n > 2, with R" — {} a connected set that is not thin at each
point of 4{). Then any solution to a Dirichlet problem for given continuous boundary data on
0{) can be approximated in a simple way by a sum that involves one function f(z) of a single
complex variable z; any analytic function f(z) not a polynomial can be used. One consequence
of this approximation property is that any harmonic polynomial can be written (exactly, not
approximately) as a finite sum involving polynomials in one complex variable. These results
reveal an unexpected simplicity in the structure of harmonic functions on R”. It is a common and
simple observation that harmonic analysis is more difficult in three or more dimensions than in
two dimensions because you do not have the direct use of the theory of analytic functions of a
single complex variable; the results here show that this obvious observation is not correct.

For applications, these approximating sums provide a large collection of functions that can
be fit to given boundary data and used for the numerical solution of Dirichlet problems in R".

The harmonic functions considered will be real-valued functions of a variable in R”, typically
X =(x), Xy, ...,%,), withn > 2.

The Walsh-Lebesgue Theorem states that if K is a compact subset of R?, with R — K
connected, then every continuous real-valued function on dK can be uniformly approximated by
functions of the form Re P(z), P(z) a polynomial in the complex variable z. Theorem 1
generalizes this result to R", with a proof that is a modification of the proof given in [1, Corollary
6.3.4, p 173] for R

Theorem 1. Let O be a bounded domain in R*, n > 2, with R" — Q connected. Suppose that

R" — Q is not thin at any point of d§). (H
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Given a continuous real-valued function g on 9Q) and € > 0, there is a harmonic polynomial
p(x) satisfying

lg(x) — p(x).] <€  forall xin dQ. (2)

Conversely, if each continuous real-valued function on 39S} can be approximated by harmonic
polynomials as in (2), then (1) holds.

Proof. Let M be the closure of the subspace of C(3{2) spanned by the harmonic polyno-
mials. To show that M = C(3()), it will be shown that if x* is a continuous linear functional on
C(3{)), which is zero on M, then x* is zero. The functional x* can be represented by integration
with respect to a regular Borel measure w on d{), which can be written as the difference of two
non-negative regular Borel measures [2]:

=y~ . (3)

Consider the Newtonian potentials for the two measures g, and j,:
P(x) =f e = (P d (). €3]
an

Each P/(x) is harmonic in R* — ) and in Q and is superharmonic in all of R”.

If () is contained in the ball B(0, r) = {x : |x| < r} and z is any fixed point with |z] > 2r,
then for |x — z| < r, the function ¢(#) = |x — #* " is harmonic in B(0, r). Thus ¢(f) can be
written as a sum of harmonic polynomials:

(1) = 2 pin), (5)

a sum uniformly and absolutely convergent on 9} [3, corollary 5.34, p 100]. Because x*(M) =
0’

j pi(t)dw, (1) = f pi()d (1), (6)
a0 30
from which it follows that

P (x) = Py(x) forxinR" — Q, (7

since the harmonic functions P,(x) and P,(x) are equal on the ball B(z, r) contained in the
connected set R" — ) [3, Theorem 1.27, p 21].
Let { be a point in d{). Because condition (1) holds
lim inf{P{x) : xER"— O, x — {} = P()). (8)

[1, p 79] and [4, Theorem 7.2.3, p 199].
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Together with (7) this shows that
P ({) = P5(Q) for {in 9L}, 9
Let L be the subspace of C(d£}) consisting of those functions fin C(9{2) for which there exists
a function /2 harmonic in {2 and continuous on () agreeing with f on 9€). The maximum principle
shows that the map f — h(x) is a bounded linear functional on L. Extend this map to a

continuous linear functional on all of C(a}), which is represented by a regular Borel measure
v, (harmonic measure, representing the functional on the Shilov boundary [4, 6.4]) for which

h(x) = f h()dv(1). (10
EIY)
For [ a point in R* — £} (and x in ),
v — g = ] e = ¢ "dv,(0). (11)
a0

Both sides of Equation (11) are non-negative superharmonic functions of ¢ in R". Since
condition (1) is satisfied at each point of the boundary of ), Equation (11) holds for £ in €} by
the exactly the same argument as was used to pass from (7) to (9).

Then

P(x) = J lx — £P"dui(2) (12)
EIV]

:f f It = P dv(1)du, (D), (13)
aQl ¥ aQ)

and an application of Fubini’s theorem shows that
P,(x) = Py(x) for all xin . (14
Hence P;(x) = P,(x) holds for all x in R”, and it follows that
K= Mo (15)
[5, Corollary 1, p 19] or [6, Theorem 6.15, p 112]. -
Conversely, suppose that £ is a bounded open set in R”, with R" — () connected, having the
approximation property (2). The approximation property implies the solvability of the Dirichet
problem on () for continnous boundary data. Given g real-valued and continuous on 4}, let

P(x) be a sequence of harmonic polynomials satisfying lg(x) — p(0)| < 1/n for x in 8€). Then
the sequence { p,(x)} converges uniformly on {} to a function continuous on £, harmonic on ),
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and equal to g on d{). Hence every boundary point of  is regular and therefore R” — ) is not
thin at any point [4, Theorem 7.5.1, p 208]. Further, if % is continuous on ) and harmonic on
(}, the harmonic polynomial in (2) provides an approximation to 4 on ), by the maximum
theorem, which is harmonic in R”. By [4, Theorem 7.9.5, p 228] or [7, Theorem 1.3, p 11], R" —
Q) and R" — () are thin at the same points, namely at none. n

Recall that a domain () in R” satisfies the Poincaré exterior cone condition at a point £ in its
boundary d(} if there is an open truncated cone C with vertex { and C — {{} lying in R* — Q
[4, p 186] and [3, p 232]. If () is a bounded open set that satisfies an exterior cone condition at
every point on its boundary, then the Dirichlet problem with continuous boundary data has a
solution, i.e., given a continuous real-valued function g defined on 9{}, there is a function h
harmonic in € and continuous on { with h(x) = g(x) for all x in dQ) [4, Chapter 6] and [3,
Chapter 11].

Corollary 1. Let ) be a bounded domain in R", with R* — Q) connected. Suppose that
satisfies an exterior cone condition at each point of 98). Given a continuous real-valued function
g on o} and € > 0, there is a harmonic polynomial p(x) satisfying

lg(x) — p(x)| < e for all x in 0€}. (16)

Proof. Given {in 9}, let C be an open cone with vertex at £ and B({, r) be a ball for which
B(Z, r) N C lies in R” — . Then

B, hNCCR - Q. (17)

Since the truncated cone is not thin at { [4, Theorem 6.6.15, p 185] or [3, Lemma 11.16, p 232],
condition (1) of Theorem 1 is satisfied. .

Lemma 1. (i)

(i) Let h be a harmonic function of two variables defined on an open set U in R?, and let a and
b be two perpendicular vectors, a - b = 0, of equal length |a| = |b| in R". Then h(a - x, b * x)
is a harmonic function for x in R" and (a - x, b * x) in U.

(ii) Let f be analytic on a disk D(z,, r) = {z : |z — z,| < r}. If fis not a polynomial on D, there
is a point 7, in D where every derivative of f is nonzero:

Nz #0  forj=0,1,2,.... (18)
Proof. Set H(x) = h(a - x, b - x), and (i) follows from the computation of V2H(x):

n n n

hyla-x, b-x) > a; + hyla-x, b-x) > b} + 2h(a-x, b-x) > ab;. (19)

1 1 1

Let D; = {zin D: fY(2) = 0},j =0, 1, 2,....If (ii) is not true, then D = UD; and any
closed uncountable subset F of D intersects at least one set D, in an infinite set with a limit point
in D; by the identity theorem £V is identically zero in D and f is a polynomial. (See [8] or [2,
ex. 2, p 227} or [9, p 53)). u
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Theorem 2. Let f(z) be a function analytic in a disk D(zg, p), where it is not a polynomial:
using Lemma 1 we can suppose that (18) holds. Let Q) be a domain in R”, satisfying the
hypotheses of Theorem 1; and let g(x) a real-valued function on 9§} and € > 0 be given. There
are complex constants o; and vectors & and ¥ in R", j = 1,2,..., N with
a-b=0 and || = |p) < r, 20
r chosen so that

la/~x +ib-x|<p,  forallxinQ, @n

so that the corresponding function

N
h(x) = Re >, af(z + (¢ x + ib/ - x)), (22)
=1
defined and harmonic on ), satisfies
|h(x) — glx)| <e  forxin Q. (23)

Consequently for all x in Q, h(x) is within € of the exact solution u(x) to the Dirichlet problem
with boundary data g.

Proof. By Theorem 1 it will suffice to consider boundary data given by a harmonic
polynomial p(x). Since a harmonic polynomial p(x) of degree k can be written as a finite sum
of harmonic polynomials homogeneous of degree j,j = 0, 1, ..., k [3, theorem 1.31, p 25], it
will be enough to approximate each of these homogeneous polynomials and so we can also
assume p(x) to be homogeneous of degree m.

The first step in the proof will be to find a specific approximation of the general type
displayed in (22). This will be done by deviating from the customary approach of analyzing
harmonic functions in terms of their values on spheres, and instead considering the cube:

K={x:0=sx=m0=sx,<m,...,0=x,<7}, 24)
with center
T T T
L) o
Let
g(x) = p(x + co) (26)

and consider the Dirichlet problem on K with continuous boundary values given by restricting
g(x) to oK.
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The classical method of separation of variables applies to such a problem. A particular
solution u, will be found that is equal to g(x) on one face F of K and is zero on all the other
faces; the solution to the general problem is then the sum of such functions, one for each face.

Consider the face F given by

F={x=(m x5, x5 ...,5):0=x,s71,0=x;=m,...,0=x,=< 7} 27)

By separation of variables the particular solution u(x) is obtained as a sum over the multi-index
o= (0, ..., q,):

up(x) = O ¢ sinh(kx,)sin(a,x,) - - - sin(e,x, ), (28)

with

B=a+al+- - +a 29)
where the coefficients are computed so that when restricted to F, this sum is the multivariable
Fourier series of g(x). Because g(x) is a polynomial, the convergence of this series can be

analyzed using the theory of Fourier series in one variable. A typical term in g(x) has the form
X553 - - - X, with Fourier coefficient

n

2/a)" ! j cen f X570 xrsin(agx,) - - - sin(egx,)dx; -« < - dx,, (30)
4] 0

which equals the product

2" 2|7
p x57sin(opx,)dx, - - p x"sin(ayx,)dx,. 3D
0 0
Hence on F, a partial sum of the Fourier series for x5x5% - - - xJ is
Na N3 N,
cLs8in a,x, - - - sin a,x,, (32)
@ 2V2 VR
ar=1 o3=] an=1
which equals
N2 N3 Ny
2 clsin(ax) X cisin(an) - 2 clsin(ax,), (33)
az=1 az=] ag=1
the product of the partial sums of the Fourier series for x37, . . ., x;. Hence for x| = r, the series

(28) converges boundedly to g(x) for 0 <x, <, ..., 0 <x, < [10, Theorem 45, p 32}, and
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to zero if any of x,, . . ., x,, are either 0 or 7. Summing over all the faces of K defines the putative
solution

u(x) = X {up(x) : F a face of K. (34)

If this solution 1 were equal to g(x) on all of dK, it would be immediate that u(x) and g(x)
are equal in the interior of K. However, u(x) = g{(x) holds for certain only on 4K — E, E
denoting the edges of K. What is needed to conclude that u(x) and ¢(x) are equal in the interior
of K is a Phragmén-Lindel6f theorem for the Laplacian [11, Corollary p 99 and pp 99-102]. The
hypotheses of this theorem require that u and g be bounded and that a function w(x) exists
satisfying w(x) > 0 on K, w(x) harmonic in the interior of K, and

lim{w(x) : x — y, x in the interior of K} = + for y in E. (35)
For the specific edge
EI = {X = (O! 01 X3y X4y o0 oy xn)}7 (36)
consider
w,(x) = J' . f |x = (0,0, t5, ty, ..., t)|* "dtsdt, - - - dbt, 37
0 0
The function w,(x) is harmonic on R” — E|, and by evaluating the limiting integral in polar
coordinates is seen to tend to +o as x approaches any point on E;. Adding up such functions,
one for each edge of K, gives the desired function w(x) and the above mentioned theorem
applies showing that u(x) = g(x) in the interior of K.
Examination of the coefficients in the series for u(x) shows that it converges uniformly on

compact subsets of the interior of K, so in particular on the closed ball of radius one with center
at the center of K,

B = B(c,, 1). (38)
Thus, given € > 0, there is a partial sum v of the series for u with

lu(x) — qx)| < e for x in B. (39)

The terms of v can be written in a different form using trigonometric identities that are
expressed as sums over all possible values of €,, €, . . ., €, Where each €; is either +1 or —1:

—1
sin(0))sin(@,) - - - sin(6,) = Tl E € - €g,sin(0, +€0,+ - +¢€,0,) (40)

for m odd, and
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—1
Sin(ol)Sin(OZ) Tt Sin(om) = E’;T—l E € GWCOS(BI + 6202 R Emﬁm) (4])

for m even. Substituting these expressions in the terms of (28) gives a new series with typical
term either a constant times

sinh(k,x))sin(ax, + a0 + - - - + €,00,x,) (42)
or a constant times
sinh(k,x)cos(ax, + €065x; + - - - + €0%,). (43)
The R" vectors
a=(k,0,0,...,0) (44)
and
b =10, ay, 503, ..., €, (43)

are obviously perpendicular and have the same length by (29). Therefore each term in the sum
up can be written as a sum of functions of the form

ha-x, b-x), (46)
where 4 is a function of two variables harmonic on R* and a and b are perpendicular vectors in
R" of the same length. This is also true when separation of variables is applied to the lower face
{x:x = (0, xp, x3,..., x,)}, the only difference in form is that sinh(ex;) is replaced by

sinh(a(x; — ).
Thus, the partial sum v, which satisfies (39), can be written as a finite sum

N
v(x) = X hid - x, b x), (47)
i

each h; a function of two variables harmonic on all of R?, and each pair ¢’ and ¥ perpendicular
vectors of the same length in R™.
From (26)
Ip(x) — v(c, + x)| < e for x| < 1. (48)

Translation by ¢, does not change the form of the function v as each term in the series
representing v(x + ¢;) is

H(d -x,bx)=h(d x+d cy, ¥ x+ b cp), (49)
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where Hj is a function of two variables, harmonic on Rz, and

N

p) — X Hia x,b-x)| <e for=1 (>0)

1

Since () is bounded, () is contained in a ball B(0, r;). Using the fact that the polynomial p(x)
is homogeneous of degree m,

X
p(x) — i’}’v(r ) ’ = e for x| = r,. (1)
1

Therefore p(x) can be approximated to arbitrary accuracy on {) by functions of the form
rTv(x/r;), with no scaling necessary if r; < 1. The change of variable in v(x) to x/r; can be
accomplished by writing &/r, and &//r, for &/ and ¥/; and when this is done (50) can be assumed
to hold for [x| = r, and therefore for x in Q.

Let

rp=2sup{lx||¢| :xinQ,j=1,2,... N} (52)

so that for x in Q) and all & and ¥ appearing in the sum (50), the R? vector (@ - x, ¥ « x) has
length bounded by r,. For each term H; in the sum (50), consider the Dirichlet problem in R*
with domain the disk D(0, r,) and boundary values those obtained by restricting H; 10 dD(0, ry).
By [8, Theorem 2], given € > 0 there is a number r > 0 and a finite number N of complex
constants ¢} and real numbers X,, || < r, with

N;

H(Re(z), Im(2)) — Re 2, cif(z, + M2)

k=1

€

holding for all z in dD(0, r,), and therefore in D(0, r,) since both H; and the approximating sum
are harmonic in D(0, r,). Adding up these approximations for all the H; terms in the sum for p(x)
gives

NN

p(x) —Re >, > df(zo + (Nl *x + it/ - X)

= k=1

<€ (54)

for all x in D(0, r,) and so for all x in . Replacing & and & by M and MP gives an
approximation as in (22). =

The proof shows that the vectors ¢’ and ¥/ appearing in the approximating sum may be taken
to have a special form where each ¢ has only one nonzero coordinate.

Theorem 3. The vector space of polynomials on R", which are harmonic and homogeneous of
degree k, has a basis of the form
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{Re(a-x+ib-x) Im(a-x+ib-x)*,a,binR",a-b =0, la| = |bl} (55)
Consequently a harmonic polynomial of degree m can be written as a linear combination of the
polynomials in (55) using k = 0,1,..., m.

Proof. Let p be a harmonic polynomial of degree less than or equal to m, and let € > 0 be

given. Taking the analytic function fto be entire in Theorem 2, there is a function h(x) harmonic
on R”,

h(x) = 2 hid - x, bV x), (56)

j=1

where each hj is a function of two variables, harmonic on R?, and & and ¥’ are perpendicular
vectors in R” of the same length, satisfying

p(x) — h(x)| < e for xin B(0, 2). (57)

Ifoa=(ay...,a,)isamulti-index with || = m + 1, there is a constant C,,, depending only
on a and r = 2, so that the Cauchy estimates [3, p 33]

C
ID*(p(x) — h(x))] = [D*h(x)| = € 555 (58)

hold for all x in B(0, 2). The function A(x) can be expanded in a Taylor’s series about 0 giving
h(x) = g(x) + R, (&), & on the line joining x to 0, (59)

q(x) the Taylor polynomial of degree less than or equal to m, with remainder of the form

1 +1
R(O=Grr 2 ("a Jpo - Do e (60)

laj=m+1

Since the constants in (58) are known, by a choosing the correct multiple of € in inequality (57)
it is possible to have

R.(§)] < e (61)
holding for all possible & in B(0, 2). Then
lp(x) — g(x)] < e for x| < 2. (62)

Each function sy, y,), harmonic in two variables in all of R?, can be expanded in a Taylor’s
series

hi(y1, y2) = q,(y1, y2) + R &) (63)



HARMONIC FUNCTIONS ESTIMATE 915

for some point (&, &) lying on the line in R? joining the point (y;, v,) to 0, with

D*h,(0)

o!

[Ij(yl’ Vo) = E

la|=m

ye (64)

a harmonic polynomial [3, pp 23-24] of degree less than or equal to m. Since gl yy ¥o) is
harmonic, there is polynomial Q(7) in the complex variable z, with

‘]j()’h y,) =Re Qj()’l + iy)). (65)
The remainder is
1 Y m 4
RNG &) = (yr 2 < ‘ )D'fDZ’“”‘h,-(({, Byl e (66)
k=0

Note that for (y,, y,) in a bounded set, the Cauchy inequalities show that the mixed partial
derivatives of s, which multiply the terms yiy7 17k in (66), are bounded. At the point (¢’ - x,
¥ - x), this remainder is

i

1 g + 1 , - |
(m+1)! 2 (m )Dm?”'“k’h(i’, D (a - x) (- x)m (67)

The function k& can then be written as

h(x) = §(x) + 2 R, &) (68)

=1

with §(x) a harmonic polynomial of degree less than or equal to m, which is a linear combination
of the functions given in (55) for k = 0, 1,..., m. Since

la « x|¥|b« x|k

- — 0 asx — 0, (69)
x|

Equation (67) shows that § must be the mth degree Taylor polynomial of k [12, Theorem 7.4,
p 135],

4(x) = q(x), (70)
and

lp(x) — g(x)| < e for x in B(0, 2). (7D)
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Let M be the subspace of all harmonic polynomials of degree less than or equal to m, taken
with the norm

Ipll = sup{lp(x)| : |x| < 1}. (72)

The space M is finite dimensional, being a subspace of the polynomials of degree less than or
equal to /m, and so has a compact unit sphere. Thus there are a finite number of polynomials in
M of norm less than or equal to one, p,, ps, ..., p,, with

U B(p;, 0.5) D Sy, Sy the closed unit ball in M. (73)
j=1

For each p;» choose ‘/7 as in (68), a harmonic polynomial which is a linear combination of the
functions displayed in (55), for k = 0, 1, ..., m, and therefore itself belonging to M, with

lp, = gl <3 (74)

-

Let L be the subspace of M spanned by ¢, ¢, . . ., ¢:

L:SP(Q/J\’ q’;s a(;:) (75)
It cannot be that L is a proper subspace of M, for if were there would be a p in M with
lpll =1 = dist(p, L), (76)

contradicting (73) and (74).

It has been shown that a harmonic polynomial of degree m can be written as a sum of
homogeneous polynomials of degree k, taken from the set (55) for various vectors @ and b and
various values of k = 0, 1,..., m. If a polynomial p(x) is expanded as a sum of polynomials
p{(x), each homogeneous of degree

p(x) = 2, pi(x), (77)

j=1

this expansion is unique and each homogeneous polynomial p{(x) is harmonic if p(x) is
harmonic {3, pp 23-24]. Hence if p(x) is harmonic and homogeneous of degree m, it must equal
the sum of the terms in (77), which are themselves homogeneous of degree m, and the theorem
follows. »

NOTE ADDED IN PROOF

Stephen Gardiner notes that Theorem 1 is contained in Theorem 1.15 [7] and Theorem 7.9.7 [4].
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