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Abstract

A new advance in the Complex Variable Boundary Element Method, or CVBEM, is its extension to three-dimension (3D). This advance

breaks down the barrier of limiting CVBEM models to two-dimensional (2D) problems, and also opens the door to solving 3D potential

problems with other 2D numerical analogs. In this paper, a 3D analog is developed using 2D basis functions of the complex analytic

polynomial type. Thus, 2D complex polynomials are being applied to 3D potential problems. This new advance may be of interest to those

involved in applied mathematics, complex variables, boundary elements, and numerical solution of partial differential equations of the

Laplace of Poisson type.
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1. Introduction

The Complex Variable Boundary Element Method, or

CVBEM, has been the subject of several papers and

books since the early 1980’s. Most recent books are [1,2],

which examine two-dimensional theory and applications

and the more recent three-dimensional development, or

3DCVBEM. In the latter referenced book, the traditional

two-dimensional limitation to use of complex variables is

eliminated. Thus, there is now a viable and usable

alternative numerical analog available for solving three-

dimensional potential flow problems such as diffusion

processes, groundwater flow, heat transport, criterion

variable spatial distribution (e.g. sediment and air transport

and rainfall among many other applications).

In this paper, a new variant of the 3DCVBEM is

examined by using sets of two-dimensional complex

polynomials instead of the usual CVBEM basis functions

of the (z–zj) ln (z–zj) type (see [1]). The basis functions are

then applied to numerically solving a steady-state three-

dimensional potential flow problem.

2. Mathematical development

LetU be a three-dimensional (3D) domain that is oriented

in the first octant of the 3D coordinate system (that is, the x, y

and z coordinates are all positive). The boundary of U is G.

The steady-state potential values of the state variable, T, are

given on G by the Tb(x,y,z) function which forms the

boundary condition of the 3D Laplace equation, in U, of

v2T

vx2
C

v2T

vy2
C

v2T

vz2
Z 0; ðx; y; zÞ2UgG (1)

where T(x,y,z) is the potential function which approaches

in value to Tb(x,y,z) as (x,y,z) approaches G from inside U.
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3. Basis functions used in numerical analog

Consider the two-dimensional (2D) analytic complex

polynomials of the form

unðx; yÞZ ðxC iyÞn (2)

where (x,y) are 2D coordinates; iZ
ffiffiffiffiffiffi�1p

and n is a positive

integer. For example, for nZ1, u1(x,y)ZxCiy and for

nZ2, u2(x,y)Z(x2Ky2)Ci2xy. The un(x,y) functions result

in a real and imaginary 2D real polynomial harmonic

components (e.g. (x2Ky2) is the real component and 2xy is

the imaginary component of u2 (x,y)). Both the real and

imaginary components of u2(x,y) satisfy the 2D Laplace

equation. Therefore

unðx; yÞZfnðx; yÞC iJnðx; yÞ (3)

where both fn (x,y) and jn(x,y) are 2D potential functions.

Consequently, both fn(x,y) and jn(x,y) satisfy both the 2D

and the 3D Laplace equation.

In the above equations, (x,y) are 2D coordinates with

respect to the orientation of the particular (x,y) plane. Other

planes are possible. For example, the familiar (x,z) and (y,z)

planes. These other planes can also be used to generate other

basis functions that are 2D complex polynomials in their

respective planes, but are therefore also 3D potential

functions. For example

unðx; zÞZ ðxC izÞn (4)

results in fn(x,z)Cijn(x,z), giving two more 2D potential

functions.

In order to simplify notation, let (x,y)m be an arbitrary

orthogonal coordinate system in plane m. Another interpret-

ation is to hold the (x,y) plane fixed but then to simply rotate

U into another arbitrary orientation, and then examine

particular properties in the orientation with number m.

Using the plane interpretation, the usual (x,y), (x,z), and

(y,z) planes correspond to coordinates (x,y)l, (x,y)2, (x,y)3,

respectively.

For a set ofM planes (or U orientations), there will be M

sets of basis functions

unmðx; yÞm; mZ 1; 2;.;M (5)

where each unm(x,y)
m is of the form

unmðx; yÞm Zfnmðx; yÞm C iJnmðx; yÞm (6)

For example, for (x,y)2, corresponding to (x,z)

u22ðx; yÞ2 Zu22ðx; zÞZ ðx2 Kz2ÞC i2xz (7)

Note that there need not be only the three orthogonal planes

usually associated with 3D space. Just as there are numerous

ways to spin U into new orientations, so there are numerous

(x,y)m local coordinate systems.

3.1. Basis functions and the (x,y)m plane, Pm

An arbitrary (x,y)m system corresponds to a 2D plane,

P
m; that lies in the exterior of U. For basis function

unm(x,y)
m defined on P

m; the objective is to minimize the

difference between the values of anmunm(x,y)
m and the

boundary conditions Tb(x,y) on G where anm is a constant to

be determined. Note that (x,y)m are the coordinates in P
m

whereas (x,y) are the original 2D coordinates.

Therefore, for M orientations of U (or M independent

planes), the approximation function is

Aðx; y; zÞZ
XM

mZ1

XN

nZ1

anmunmðx; yÞm (8)

The MN constants anm are determined by a generalized

Fourier series or least squares minimization of jTb(x,y,z)K
A(x,y,z)j for (x,y,z)2G. It is noted that the above

formulation uses only 2D basis functions, and that these

2D basis functions are complex analytic polynomials

(although others are readily possible).

Fig. 1. Application A - approximation results on northern hemisphere.
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4. Numerical model

To numerically solve the above minimization problem,

the following steps are used (see [2, Chapter 1]):

1. Define ‘integration points’ on G by ‘dusting’ the surface

of U with NINT points (where NINT is the number of

integration points). Develop a G vector composed of the

(x,y,z) coordinates of each integration point. Thus, G is a

NINT!1 column vector. Note that the integration points

are only specified on the problem boundary, and not in

the interior of the problem domain.

2. Define the NINT!1 boundary condition vector TB by

evaluating Tb(x,y,z) at each integration point in the order

assembled in the G vector.

3. Decide onM orientations of U or, equivalently,M planes

for coordinate systems and planes.

4. For each plane in step 3, apply N complex polynomials

and evaluate (as accomplished in building the TB vector)

at each integration point used in G. The resulting

NINT!l column vectors are denoted as Wnm.

5. Using least-squares minimization or a generalized Four-

ier series approach, minimize the least squares residual

between the vector TB and the vector AMN where

AMN Z
XM

mZ1

XN

nZ1

anmunm (9)

6. The approximation function is then

Aðx; y; zÞZ
XM

mZ1

XN

nZ1

anmunmðx; yÞm (10)

Fig. 3. Application A - approximation results on sphere rotated 90 degrees.Fig. 2. Application A - approximation results on southern hemisphere.
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5. Example problems

To demonstrate the above methodology, 3D steady-state

potential problems were examined using up to five

independent planes, and complex polynomials of up to

order 5, resulting in a total of 50 2D basis functions (prior to

orthonormalization). The five planes used correspond to the

usual set of three orthogonal planes in (x,y), (y,z), (x,z) and

also two planes oriented at a 45-degree angle with (x,y)

and also the (x,z) planes, respectively. All planes lie exterior

of U.

Fig. 5. Application B - error isocontours on northern hemisphere.

Fig. 4. Application B - exact and approximation isothermals on northern

hemisphere.

Fig. 6. Application B - exact and approximation isothermals on southern

hemisphere.
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As a demonstration, two non-linear potential problems

(Applications ‘A’ and ‘B’) are examined that have known

analytic solutions and therefore, the approximation error can

be readily evaluated on the boundary, G, and also in the

interior of U.

The approximation effort begins by defining a nearly

uniform (note: the numerical technique does not require

the distribution of integration points to be uniform)

distribution of 240 integration points on the boundary, G.

Again, no such points are defined in the interior of U.

Therefore, the numerical analog is similar to the usual

boundary element method type of applications.

Graphical depictions of the several 3DCVBEM test

problems can be seen in Figs. 1–7. Included in the figures

are the analytic solutions to the demonstration problems. In

addition, isocontour plots of complex polynomial results as

well as approximation error are presented.

6. Summary

From the test problems, the use of 2D polynomial

harmonic functions (such as obtained from complex

variable analytic polynomials) to numerically approximate

3D problems of the LaPlace equations are a viable

computational procedure. However, further research is

needed to conclude whether such polynomials provide

more robust approach for basis functions in the 3DCVBEM

numerical technique than by use of the standard 2D

CVBEM basis functions.

Acknowledgements

Acknowledgements are paid to the students of the

Applied Master program at California State University,

who participated in running the 3DCVBEM computer

program on numerous test problems and applications

in this paper and also the companion paper entitled

‘A Comparison of the 3D Real and Complex Variable

Boundary Element Methods (BEM).’

References

[1] Hromadka II TV, Whitley RJ. Advances in the complex variable

boundary element method. New York: Springer; 1998. 400 p.

[2] Hromadka II TV. A multi-dimensional complex variable element

method. Southampton, England: WIT Press; 2002. 250 p.

Fig. 7. Application B - error isocontours on southern hemisphere.
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