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ABSTRACT

A frequently used computer modeling strategy is to subdivide the study watershed into sub areas where each subarea is
represented by a runoff algorithm, and to link these sub areas together by means of links where each link is represented by a
flow routing algorithm. The assemblage of these subarea runoff hydrograph algorithms with link flow routing algorithms
results in the hydrologic surface runoff model that represents the entire watershed. Frequently, the subarea runoff hydrograph
algorithm selected can be closely approximated by a standard unit hydrograph model where runoff excess (rainfall less losses)
is estimated by means of a loss rate function such as the well-known phi-index (constant loss function), or a runoff coefficient
(constant percentage of rainfall loss function), and the selected linkage flow routing algorithm can be closely approximated by
a standard hydrologic routing method such as convex, Muskingum, or similar type algorithm. In this paper, it is shown that
these various algorithms can be written as matrix equations which, in furn, can be manipulated and combined into a single
global matrix system where total watershed runoff is equated to a global system matrix multiplied by the vector of unit excess
rainfalls. This final result directly compares to the standard single-area unit hydrograph method matrix system, and therefore
draws a direct linkage between use of such algorithms in a runoff modeling network and the classic unit hydrograph method.
This result may provide a better understanding between modeling component algorithm calibration and global model
calibration to rainfall-runoff data.

Key words:

INTRODUCTION

In Hromadka and Whitley (1998), a mathematical formalization of the link-node modeling system used in the computer
program HEC-1 and related computer programs was introduced that provided a mathematical description of these frequently
used rainfall-runoff computer-model structures. It was shown that many rainfall-runoff (R-R) computer-model structures
involve algorithms and processes that are described by an assemblage of Toeplitz matrices that describe the computer model's
transformation of effective rainfall (rainfall less losses) into a runoff hydrograph. For example, the unit-hydrograph-method
algorithm for generating subarea runoff and the hydrograph-routing algorithms for convex, Muskingum, . translation,
convolution and modified Puls (with storage being equal to the product of a constant parameter with outflow, i.e., a linear
storage method) have all been shown to be described by Toeplitz matrices. Because the sum and product of Toeplitz matrices
is a Toeplitz matrix, the entire modeling network methodology of subdividing a watershed into sub areas, combining subarea
hydrographs, and routing flood hydrographs through links, can be described by the Toeplitz matrix formalization for many
frequently used computer- model structures such as contained in HEC-1. Thus, a classification is possible of R-R computer
model structures regarding whether a particular R-R computer model can be mathematically described by a Toeplitz matrix
System.

In this paper, an examination is made of R-R computer models that are not resolvable into Toeplitz matrix systems. By

expanding upon the basic continuity equation of mass transport in a closed system, another R-R computer model structure
class is identified. This new class of R-R model structure is shown to be mathematically described by the sum and product of
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lower triangular matrices that are not of the Toeplitz type. The new class of model structure provides further insight as to
how R-R model algorithms and components integrate, and provides another link to standard mathematical optimization
techniques and concepts. Additionally, a procedure is advanced as to how to select a particular type of R-R computer- mode]
structure, between the two model structure types identified in this paper, for use in runoff prediction. It is noted that this
paper develops a mathematical description of the R-R computer model itself rather than examining the conceptual model that
the R-R computer model attempts to approximate. Therefore, the mathematical formalization provides a precise description
of R-R computer model structures, and is not a prescription for formulating a new class of R-R model structure.

The Continuity Equation

The well-known continuity equation of mass transport in a closed system, as applied to storm runoff, is given by

1=0+%% (1)

where I = runoff inflow rate; O = runoff outflow rate; S = runoff storage; and t is time.
For a small time step At, Eq. (1) is typically approximated in R-R computer models by

i+ L _ O+ 0, Sin-S; @
2 2 t

where, for example, [j is notation for runoff inflow at time tj, and I;+1 is inflow at time tj + At.

A key assumption typically used in hydrologic-modeling algorithms is that Eq. (2) applies to the particular algorithm
(e.g., hydrograph routing) and also that runoff storage and outflow are functionally related by

ds _ds do &
dt dO dt

where S and d4s are positive (and nonzero) functions of outflow, O. This assumption may be problematic in applications

involving backwater or hysterisis effects, among other issues. For example, a lengthy routing link may involve a rising or
falling limb of a hydrograph that is not well approximated by Eq. (3).

Assuming that the time step size, At, is sufficiently small, the term -g% is typically assumed constant during the time step

such that

dS _,.dO 4
o ki dt 4)

where Eq. (4) and the constant k; applies to a particular time step, At;.
Combining (2) and (4) gives, for a particular time step,

Li+1iy _ O+ Oy +ki(0;'+1 - O,-) 5)
2 2 t

Recombining terms we have

ajlj+ajli+1 +bi0i=0i+1 (6)
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where ai = 1/(1 + 2ki/At); bi = (2kj - At)/(2kj + At); ki = (—éi%} t" where tj is model time
4

(-1) At;andIo =0 o = 0.

Matrix Representations

The usual procedure applied in R-R computer models to represent storm rainfall or a runoff hydrograph is to discretize the
total storm duration into unit-period time intervals of constant duration, At. Both the effective rainfall over a subarea, and an
inflow hydrograph to a routing link, can be handled as an inflow vector I where

I |

Iz
I3

[
l
|
| e
l
l
|

U=
Il

|
|
|
e |
. |
J

In

@)

where the dimension n of 1 is chosen to be consistent with the entire matrix system to be developed. Similarly, the subarea

runoff hydrograph, or an outflow hydrograph from a routing link, can be handled as an outflow vector O where

[01]
| 07 |
O= | » |
| o |
| e |
| On J ®)
Note that in (7), for example, I g = I(2nt) where nt is the constant time step.
From (6),
0, = ailj
0, = aglj +apl2+b20 ]
= apl] +a2l2 + boaily
O, = a3l +a3l3+b302
= a3lp +a3l3 +b3azl] +b3a2l2 +b3b2all] ©
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In matrix form, a particular R-R computer-model algorithm given by (9) is mathematically described by

[ 011 [ aj 0 0 see o | | I |
| oy | | (bpar +ap) ap 0 eee 0 | [ 1|
| 03 | | batbpai+az)  (bzap+az) a3 ese 0 | | 13|
I . . . . e || e
| o | l ; " . « | 1 = |
| | | . . . e |1 e
| on ) L Il

On (10)

® ® ® see an In

or in simpler notation,

O =xl (11)

where 9 and HI, are nx1 column vectors; and H is a nxn lower triangular matrix. The matrix system (10) applies to any

algorithm or component used in a2 R-R computer model that satisfies assumptions (1) and (3), and is based upon a
discretization of time such as (2), (4) and (5). Although the H matrix of (10) is a function of the particular R-R model
algorithm's properties, the notation "H" is used for any such H matrix without further descriptive notation specifying that
particular algorithm's attributes. In order to maintain consistent dimensions, the vectors 9 and l often require additional

zero value entries in order to extend the vector's dimension.

The particular H matrix of (10) is generated by noting that the entries of row i+1 are equal to the entries of row i multiplied
by the value bj+1, and adding the value aj+] to H(i+1,i) and H(i+1,i+1). Hereafter in this paper, a R-R computer model.
whose component algorithms and processes all satisfy Egs. (1) to (6), is called a "Type 2" model.

An example of a Type 2 R-R model is a HEC-1 model network, with significant detention basin effects modeled by use of
the modified-Puls method such that basin outflow and basin storage are not linearly related.

A computer model network of a catchment is composed of several linkages and sources of runoff. Consequently, the
corresponding subarea runoff estimators and hydrograph routing algorithms all combine in a complex way. The nonlinearity
of a routing algorithm may be dampened to insignificance by another routing algorithm or by the contribution from a subarea
runoff estimation method, resulting in a global model that is essentially a Type I model structure. Similarly, the nonlinearity
effects evident at a particular process in a catchment may preclude the use of a Type I model structure due to the
improvement in accuracy afforded by a Type II model structure.

Subarea Runoff Hydrographs

Let the study watershed, denoted as {2, be discretized into sub areas Qj, j=12,..,N. Each subarea has an associated

effective rainfall vector e]- developed by some prescribed algorithm, where each € j is a nx1 column vector composed of

~

sequential nt unit-period effective-rainfall depths (rainfall less losses), analogous to the vector of (7). If the subarea runoff
generation algorithm is from a Type 2 model, then the runoff hydrograph in vector form (analogous to Eq. (8)), denoted as
4; , is given by

]

~

where Ty is the appropriate H matrix of Eq. (11) for this particular process and subarea j.
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Floﬂd derﬁgranh Routing

, model link-node network, sub areas are linked together by hydrograph-routing links that include a model algorithm for
ransporting 2 hydrograph along the length of the routing link. A link is described as a connection between nodal points

(nodes)-

Given an inflow hydrograph at node i, and a link that connects node i to downstream node i+1, then the outflow
hydrogl‘aph: at node i+1, is developed by routing the inflow hydrograph along the length of the link, Ljj+]1. If the routing

algorithm is from a Type 2 model, then the following equation in the form of (11) is obtained

Qi1 =Rii+1 I (13)

~
—~

where 1 ; s the inflow hydrograph at node i in nt unit-period vector form; Qi +1 isthe outflow hydrograph at node i+1; and

Rii+1 js the appropriate E matrix for the hydrograph-routing algorithm selected for link Lj j+1.
Link-Node Models

Link-node model applications of Type 2 R-R computer models are readily developed using the above formulations.

Example 1. Figure 1 depicts a model schematic where a single subarea runoff hydrograph concentrates at node #1 and is
then routed to node #2 via model link L1 2. For a Type 2 model, the runoff hydrograph from subarea #1 is given by

Ky =T184

and the runoff hydrograph at node #1 is given by Ql ={; . The hydrograph at node #2 is

Q, =r12Q; =R12T1€4

~

Example 2. Figure 2 depicts a model schematic involving four sub areas and two links. From the figure, the various runoff
hydrographs developed from a Type 2 computer model are given by

Q1 =%1 +d, :T131+Tze?_

Q, =r1,2Q; +qz =R1,2(T1€; +T2€;)+T3ey
Q; =R23Q, +q, =R23(R12(T1€q +T2€,)+T3€5)+ T4y

where again Q3 is the runoff hydrograph at node #3 developed from a particular Type 2 computer model, and (5 is the
funoft hydrograph from subarea #3 developed from the particular Type 2 computer model.

H Matrix Principles

From the above, a Type 2 R-R computer model can be resolved into sums and products of H matrices such as developed in
Eq. (10). In order to use this result effectively, some of the properties associated with H matrices must be considered.

Let H(n) be the set of all nxn lower triangular matrices, and any element of H(n) is said to be a H matrix. Key properties of
H(n) are as follows:
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Property 1: Let2 andB [ H(n). Thena +B [ H(n).
Property 2: Leta andB [ H(n). Thena B [ H(n).
Property 3: Let A be areal constantand A [ H(n). Then A2 [ H(n).

Property4: 2 +B=3B +A.
Property S: (A +B)+C=2a+(B+0Q).
Property 6: Let A, B, Callbe [ H(n). Then A(B + C) = AB + AC.

With the above properties, the manipulation of the H matrices is straightforward. It is noted, however, that the product of i
matrices is not necessarily commutative. This mathematical result is congistent with nonlinear R-R computer model results
that indicate sensitivity to the ordering and arrangement of links and other processes. Using the above properties, the
example 2 problem results for node #3 can be expanded into a series, as

Q, =R23R12T1€; +R23R12T2€, +R23T3 i e
4
H; €. (14)
1))

=H]€; +H2€, +H3€ +Hie, =

] &
where each Hjisa H matrix and, for example, H} = R) 3R] 2 T1.

Comparison to a Toeplitz Matrix Structure

In (Hromadka and Whitley, 1998), a mathematical formalization of the link-node modeling system used in the computer
program HEC-1 and related programs produced the result that many frequently used R-R computer- model structures were
resolvable into Toeplitz matrix systems. Toeplitz matrices of dimension n, denoted by T(n), are also H matrices except that a
particular circulant matrix structure occurs; for example, for U [ T(n),

[ uy 0 0 see 0 1
| u2 ug 0 ese 0 I
f u3 up up eee 0o |
7 = | . . . o |
| . . N . |
| . . . o |
L un Un-1 up-2 ®e°® up (15)

Note that in (15), the diagonal and off-diagonal terms are constant. Many R-R computer models utilize processes and
algorithms that are shown, in Hromadka and Whitley (1998), to be Toeplitz matrices (see the Introduction of this paper).
Hereafter in this paper, computer models whose algorithms and processes resolve into Toeplitz matrices will be called "Type
1" models.

Because Type 1 models are also Type 2 models, they satisfy the above properties 1 to 6. It is noted that for
Toeplitz matrices, matrix multiplication is commutative, which is a different result than for 1 matrices in a Type 2
model.

The distinction between Type 1 and Type 2 model algorithms and processes occurs at Eq. (3). If -(% is a constant for a

particular algorithm, then in Egs. (6), (9), (10), the terms aj and bj are the constants ag and by, respectively, in which case
(10) simplifies to
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[ O1 ] [ ag 0 0 eee 0 1 [1g)
| O | ] ap(bg +1) ag 0 ece 0 | |1l
| 03 | I boag(bo +1) ap(bo +1) ag soe 0 | | 13 |
| o | = | . . . o | | e |
| o | | . . . o | | e |
| s )] ‘ , : e | 1. |
| On J L . . . p— aw | L) (16)

which is a Toeplitz matrix system. Several algorithms used in HEC-1 and related programs are resolvable into Toeplitz
matrices; for example the hydrologic routing procedures of translation, convex, Muskingum, convolution, modified-Puls
(with S = kO; i.e., a linear routing method), and the unit-hydrograph method for generating runoff are all Toeplitz matrix
systems (Hromadka and Whitley, 1998). Similarly, modified-Puls routing where storage and outflow are nonlinear, or in a
nonlinear model of hydrograph routing, the corresponding matrix system is not of the Toeplitz form, yet the continuity
equations (1) to (6) are satisfied; these algorithms are found in Type I models.

Matrix System Representation Series Expansions

Suppose a Type 1 computer model is used to study a watershed with m "sources" of effective-rainfall information vectors.
For example, several sub areas of the link-node model may have identical effective-rainfall vectors or have subarea effective
rainfalls that are linear combinations of source effective-rainfall data. The concept introduced here of "sources" of effective
rainfall is analogous to the principles involving mutually independent vectors where, in this case, a subarea's effective-rainfall
vector is a linear combination of other subarea effective-rainfall vectors. The minimum number of linearly independent
effective-rainfall vectors is called a basis, where each subarea's effective-rainfall vector is a linear combination of the basis or

"source" effective-rainfall vectors. The number of linearly independent vectors in the basis is called the dimension.
Hromadka (1993) provides more details. Then, by generalizing the series expansion of Eq. (14), the computed runoff
hydrograph is the vector Q where

m
Q= zre, | (17)
~ k=1 ~

where (Q and each e are nx] column vectors; each Ak is an nxn Toeplitz matrix; and m is the dimension of the effective-

e —~

rainfall vector basis.

Similarly, if a Type 2 computer model is used, then from the series expansion of Eq. (14),

m
Q=e e, (18)
2 el s

where each H is an nxn H matrix.

If only a single source of effective-rainfall information (i.e., the effective-rainfall vector basis has a dimension = 1)
Is used, the vector e , then Egs. (17) and (18) simplify to

Q= ( Ag € ; Type 1 model (19)
k
l Ho e ; Type 2 model (20)
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where 2 is a nxn Toeplitz matrix; and H, is a nxn H matrix. The matrices Ag and Hg are consistent with the dimensions of
the Ak and Hj matrices used in (17) and (18), respectively. The zero subscript notation in Ag and Ho is used to indicate that,
in the case of (19) and (20), both A and H, are equivalent to the entire assemblage of Ak and Hk matrices used in (17) ang

(18), respectively. The use of Eqgs. (19) and (20) is further investigated for deciding whether a Type 1 or Type 2 R-R
computer model is "best".

R-R Model Calibration and Model Structure Selection

In order to simplify the analysis, a single storm and a single source of effective-rainfall information are considered for R-R
model calibration purposes. Equations (17) to (20) are important because they show that the application of 2 Type 1 or Type
2 R-R computer model to a highly discretized watershed involving numerous sub areas linked together by numerous
hydrograph-routing links results in a nxn matrix series expansion (Eqs. 17, 18) that, in the case of a single source of effective
rainfall information, simply sums to a single matrix-vector product (Eqs. 19, 20) and this resulting matrix-vector product
involves a nxn matrix that is either a nxn Toeplitz matrix, Ag, (Eq. 19) or an nxn H matrix, Hg (Eq. 20). That is, if the
effective rainfall vector set has a basis of dimension = 1, then regardless of the number of links and sub areas, the matrix
systems of (19) or (20) still result. Of course, different arrangements or different choices of hydrograph-routing algorithms
(e.g. Muskingum versus convex, etc.) or use of a different subarea hydrograph generator algorithm will result in different aj

and H) matrices in (17) and (18), and also different 2y and Hg matrices in (19) and (20), respectively. Consequently, a wide

range of matrices must be considered due to the variety of R-R model schematics and algorithms. The key issue, then, is
determining the "best" matrices to be used in Egs. (17) to (20). One approach is to utilize standard optimization techniques,
which are summarized below.

Let Ag be in T(n). Then,

[ a1 0 0 coso 0 1
| ap al 0 soe 0 |
Ao= | a3 ap al coe 0 |
| 3 " . . |
| e . e ° |
| 4 3 : s ]
L an an1  an2  eee ap | @n
Then A is seen to be a function of n variables (or degrees of freedom)
Ao = Aolal, a2,--an) (22)
Similarly, the Hg matrix of (20) is in H(n) where
[ hp 0 0 eee 1
| hy h3 0 eee 0 |
Ho= | hy hs hg eee 0 |
| o o ° . |
| e . . . |
| e . . . |
| e . . eee hinti)n/2 J (23)
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Thus, Ho is function of (n+1)n/2 degrees of freedom:

Ho= Ho(h1, h2.....h(n+1)n/2) (24)

When rajnfall-nm_off data are available to calibrate the R-R model at a specific point of study, the question arises whether
{0 calibrate the matrix systems of Egs. (19) or (20), or whether to attempt to calibrate each of the numerous algorithms and

processes leading to Eqgs. (17) and (18).

In order to differentiate between these two types of calibration strategies, let H%N be the Hp matrix resulting from
the calibration of each link-node model algorithm and process leading to the development of (20), and let H:; be the Hg

matrix resulting from the direct calibration of Eq. (23) in Eq. (20). Similarly, let AI;)N and A’:) be the resulting Toeplitz

matrices from calibration of each of the various link-node processes and algorithms leading to (19) and the calibration of Eq.
(21), respectively Hromadka and Whitley (1998) focus on this particular topic).

As shown in Hromadka and Whitley (1998), for a Type 1 computer model, the best calibration is achieved using the A:;
matrix, because the AI(;N matrix cannot do any better than the A’:) matrix in reducing the residual error between computed
runoff and the runoff data. It is recalled that sefting Ag = Az in Eq. (19) results in a matrix system representation of the
classic single area unit-hydrograph method. Similarly, the HI{)N matrix cannot outperform the H’:’ matrix in reducing
modeling residual error in the Type 2 computer- model calibration effort.

Thus, the best calibration possible from the Type 1 or Type 2 computer model, to a specific storm, given a single source of
effective-rainfall data, is achieved by developing the A’:’J or H :‘) matrices, respectively, as used in Eqgs. (19) and (20). This
conclusion is used in developing a decision-making procedure for deciding whether to use a Type 1 or Type 2 R-R computer
model. In other words, provision of an answer to the question, "Are the R-R data sufficient to conclude that use of a Type 2
model will necessarily provide better results than use of a Type 1 model?" will be attempted. This question is posed more

yrecisely in the following Type 1 R-R Model Structure Selection Test.

TYPE I R-R MODEL STRUCTURE SELECTION TEST:

Let T1 and T2 be the sets of all Type 1 and Type 2 R-R computer models, respectively. Let T3 =T - T, because
T is a subset of T2, it is necessary to distinguish models in T2 that are not simply Toeplitz systems and, therefore, also in T1.
Let D be a set of M (M > 1) mutually independent rainfall-runoff events to be used for R-R model calibration and
verification purposes. Choose a split-sample size, 0 < Mg < M where Mg is the number of storms to be used in model
calibration, and (M-Mg) storms are used in model verification tests. Then there are n = (1\1\//[[5) possible split-sample
combinations of the M R-R events in D. Let Sy be the set of all such split-sample combinations. The elements of Sy, are

denoted by s [ Sn; 1= 120800
Let the minimum least-squares residual error in calibration of a Type 1 and a Type 2 R-R computer model to split-
sample data set sj [ Sy be achieved by elements M*li [ T and M*Zi [ Tp, respectively; i = 1,2,..m. M’;i (and also

M*Zi) is optimized with respect to all M storms in s, simultaneously.
Three cases are identified:
(a) If Mai [ Ti,then M*Zi = M;i and a Type 1 model structure provides the minimum calibration residual

€rTor.
(b) If I\II*2i [ T3 and the residual error for the verification events (of sj) produced by I\/I*1 i is less than that

produced by M’ i then a Type 1 model structure provides the minimum verification test residual error.

(c) Neither case (a) or (b) applies.
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If either case (a) or (b) applies for data set s;j, then the above described test is considered "passed". Let P be the total number

of passed tests; for i=12,...,n. Define the Type 1 Model Structure performance ratio, r, by r=P/n.

In this paper, if r > 50-percent, the Type 1 R-R model structure is selected as the "best" model structure, 1.e., more
than 50-percent of the time the use of Toeplitz matrices, as opposed to the use of the more general lower triangular matrices,
provides either the smallest calibration error or the smallest verification etror.

Choosing Between a Type 1 or Type 2 Model Structure

To apply the above concepts, the optional A’; and H ’:) matrices must be determined with respect to several storms
simultaneously. Specifically, suppose M storms with similar effective rainfalls (similar in timing and magnitude) are
available. Then, regardless of the R-R model structure, similar computed runoff hydrographs are expected. Additionally,
similar matrix systems should be developed for each of these storms (although, of course, the Type I matrices would differ

from the Type 2 matrices).
In order to choose a Type 1 or Type 2 R-R computer model for future use, the split-sample test procedure, provided

below, can be used:

R-R Model Split Sample Test

Step 1. Divide the M similar storm data sets of effective rainfall and runoff into two sets, calibration and verification.

Step 2. Develop optimized matrices A’:) and H :), each optimized for the entire set of calibration storms, using a leas.
squares residual minimization and Eqs. (19) and (20). Constraints may be considered such as imposing a
requirement that all matrix entries are nonnegative; or that particular matrix entry values are bounded by proportions
of other matrix entry values; among other constraints. (The following application case study demonstrates the
optimization process for 4 calibration storms, simultaneously.)

Step 3. For the verification storms, use A: and H ’:} in Egs. (19) and (20) to "predict" runoff quantities for each verification

event.
Step 4. Compare the computed runoff hydrographs from Step 3 to the runoff data for the verification storm set and compute
the total residual error.

Step 5. Select the computer model type based on the least total residual error.
Step 6. Repeat steps 1 to 5 by trying all possible split-sampling combinations to evaluate sensitivity to selection of model

type.

From the previous section, the Type 1 model that solves Eq. (19), using A ’:), is the best Type 1 model in calibrating to the R-
R data at a specific watershed location. Similarly, the best Type 2 model performance in calibration to the R-R data is
achieved using Eq. (20) with the H‘g matrix. Because there are more degrees of freedom in the H’g matrix, Eq. (20) will

typically provide a lower calibration residual error than Eq. (19), and could appear to be the better model structure; however,
a better model in calibration is not necessarily a better model in prediction; hence, the split-sample test procedure.

If the A’:) matrix Type 1 model provides the best split-sample testing verification results in comparison to the H ’:)
matrix Type 2 model, then no other Type 2 model can perform any better than the A’:J matrix Type 1 model for the given test
calibration specifications; i.e., the classic single-area unit hydrograph technique is the best approximation in the specific case
study and for the available R-R data.

It is noted that the above calibration procedure results in an A’; matrix that can be used for a variety of storms just
as a calibrated unit hydrograph is commonly used for a variety of storms. In contrast, the above H ’:) matrix is only
appropriate for use with storms whose effective rainfalls are similar in both magnitude and timing with the set of storm
effective rainfalls used in the calibration and development of the H ’:) matrix. This is because the H ’:) matrix was constructed
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from a set of -g% values (see Egs. (1) to (6)) that are all mutually dependent on storm timing and magnitude, which dictates

the condition of runoff storage throughout the link-node model for each model time step, nt.

If the split-sample test results indicates strong evidence that a Type I model structure does not achieve the success, in
verification, that a Type II model structure achieves, then there may be several issues that are involved. For example, there
may be highly nonlinear R-R or routing processes involved, there may be issues regarding R-R data, among other topics.

Case Study: Choosing Between a Type 1 or Type 2 R-R Computer Model
Structures for a Catchment in Los Angeles, California

Seven significant storms {ei ; i=1,2,...,7} were selected from a single rain gauge in Los Angeles, California. The

~

yain gauge is located near the centroid of a 7.4 square mile watershed. The watershed's condition of urbanization and storm
drainage is essentially constant for all seven storms. The time of concentration is approximately 50 minutes as computed
from a sum of flow velocity travel times along the main watercourse. Each of the selected storms had similar prior rainfall
‘histories (i.e., antecedent moisture), and the rainfall pattern timing and magnitudes were such that all rainfall intensities were
within ten percent of each other, for any storm time, t. Only the initial 2-hours of each event was used in this analysis. The

storms were of such similarity that one would expect similar runoff responses for all seven storms, [Qi ;i=1,2,...,7}. A five-

minute unit time period was used in the analysis.

Step 1. For calibration purposes, the seven storms were split into a set of four calibration and three verification storms. All
possible combinations of four calibration and three verification storms were determined (a total of 35) for eventual
decision-making sensitivity analysis, in step 6.

Step 2a: Calibration of A”c‘) matrix. The entries of the A’:} matrix, where

[ az 0 0 soe 0 |
* *
| @l 0 ees 0 |
A::): | a*3 a*z a’fi eoe 0 I
| L] L] ° e I
I L ] ® ® L ] |
| o o . e |
i * * see 4
L aj, a , a , aj | (25)

must be determined such that the least-squares residual between the computed runoff hydrographs and the measured runoff
hydrographs is a minimum.

For a single storm with effective rainfall el (for example), the usual least-squares difference between the vectors Q! and

Q1 must be minimized, where Q! is the measured runoff hydrograph and Q1 is the computed runoff hydrograph given

~

by

Q1 =AY 51 (26)

~

and the dimensions of (Q*1 and el are nxl. The vector superscript notation refers to the storm number. This is

accomplished by noting, for e]# 0,
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[e1 11 [0 11 [0 1 [0 1
| e2 | | ep | o | [ o |
| e3 | | e | | e1 | [ 0 |
AL Sl =ay | e | ta), [ o | *taj | ea | Fetat e |
[ o | | o | | o | ' | o |
| o | | o | [ o | | o |
l en J l en-1 ) | en2 ) ler ) (27)

Then, from Eq. (27), the values of {a’; ; 1=1.2,...,n} are uniquely determined by the well-known Gramm-Schmidt procedure in

minimizing the least squares difference between the recorded runoff Q1 , and the product A’:) el (see Hromadka and
Whitley, 1989, Chapter 3).

For four storms, however, the Gramm-Schmidt procedure is extended to minimizing the residual error for all four storms
simultaneously. This is accomplished by “stacking" all four calibration storms Q' and el vectors, i=1,2,3,4 such that Eq.

(27) is extended to choosing the ", values of A”c‘) to minimize the least squares residual in the vector equation:

[ (gt [ [ e [ o 17 T o0 1T
I | gl | [ | e | | | | e | | | 1 & -0 |
|1 o] | |l e | ] | 1 e | | [l e ||
| ] e | | R [ I = (] Ll e |
. | | e | | T 1 o | |
| lan) | | Len) | | L en1 J | | | er ) |
| [ q1? | [ [ e1 1% [ [ o 121 [ [ 121
[ gl | | | e | | | ] e || || ||
Ll el | || e | ] |1 e || |1 e ||
I R L T B 4 B B B PO I R
R N I Ll o ||
| laqn) | | Len) | | U ep1 J | [l er J |
| e | e ] | . | Il e
e e ] | . | I e
I e | e 1 . 1 I e ]
| [ q? | | [ e1 1% | [ o 1% | [ 0 1%
|| ql | | 1 e | | I oer || |1 o | |
|1 el | |l e || I | e | | |l e |
|| el | Ll oe || I T | e ||
| ] el | |l e | 1 e | | 1 o | |
L | gn) | L | en ) | L L ena J | L L e J J (28)
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The resulting values a‘; ;i=1,2,...,n, are the components of the A‘:) matrix, for the available data and split-sample.

Sﬂz_b___gémgaiion of H ’; matrix. Analogous to step 2a, the entries of the H 2 matrix, where

[ h3 0 o & 0 1
| h5  hj coe 0 |

HY= | h’; h}) h:s oéw 0 |
| e . . . |
| o o . . |
| o . . . |
L e . . ese h

’En+1)n/2 J (29)

smust be determined such that the least-squares residual between all of the recorded hydrographs and the computed
hydrographs using Eqs. (29) and (20), is minimized.

Again, for storm 1 with effective rainfall €1 , this Type 2 model computed hydrograph is

Q1 =H;;e1 (30)
Ttie corresponding expansion of (30) is
[ e 11 [0 )1 [0 )1 [0 11
| o | | e1 | | e i [0 |
o | | o | l o | | e |
HYel =hj | o | +hy | o | *hy | o [*rhig .| . |
| e | | o | | e | | o |
| e | | e | | e | I
L o J L o) L o) len ) (1)

For all four storms, the Gramm-Schmidt procedure would be applied to the vector equation:
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Maq 1t 1 [ (ep 1! Fro1l1 [ (ol 7
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(el | |l e || | 1o | | |1 e | |
e | I le || I BERR
[l e | | [ 1# [ 1 I ] e | | I 1o | |
Il gn) | | 16 ] ] Lo ) | | el |
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gl | | 1o | | | | e1] | o | |
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The resulting values of h; are the matrix components of H ’:).
Step 3. Using the A’; and H; matrices developed above, computed runoffs are developed for each verification storm
A’;ei ; i=5,6,7, and HZ ei ; i=5,6,7. These are the Type 1 and Type 2 model verification estimates to be

—~

compared to the recorded runoffs from storms 5, 6, and 7.

Step 4. A least-squares weighted residual is developed for both the Type 1 and Type 2 model structures, for storms 5, 6, and
7, and summed, respectively.

Step 5. Based on the total residual error from the verification set of storms, the smaller-residual error model type is selected as

"best".
Step 6. The above steps 1 to 5 are repeated for each combination of the calibration/ verification storms.

In this application, the Type 1 model structure was selected as "best" 33 of the 35 split-sample test combinations. The
resulting A ’; Toeplitz matrices all differed, but the variations observed in the matrix components were only on the order of 4-

percent. Additionally, the calibrated H ; matrices were all quite similar to a Toeplitz matrix structure. For example, the
main diagonal terms of the H ’:) matrices had a standard deviation of less than 5-percent about the mean, for each H T) matrix.
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CONCLUSIONS

A mathematical formalization is introduced for describing rainfall-runoff (R-R) computer models and their component

orithms and processes. With this formalization, a precise examination can be made of the algorithmic underpinnings of
various R-R modeling structures. In this paper, the formalization is extended to R-R models whose algerithms and processes
all satisfy the mass conservatxop equation and also assume storage is a function of outflow such that the first derivative of
storage with respect to outflow is positive. The formalization introduces two types of R-R computer model structures, called
wrype 1" or "Type 2", that describe almost all R-R computer models in use today; for example, the classic unit hydrograph
method is found to be a Type 1 model structure. The formalization is then applied to develop a procedure useful in evaluating
whether a Type 1 or Type 2 model structure may be best for a particular application given a R-R data set for model

calibration purposes.

A computer model network of a catchment is composed of several linkages and sources of runoff. Consequently, the
corresponding subarea runoff estimators and hydrograph routing algorithms all combine in a complex way. The nonlinearity
of a routing algorithm may be dampened to insignificance by another routing algorithm or by the contribution from a subarea
unoff estimation method, resulting in a global model that is essentially a Type I model structure. Similarly, the nonlinearity
effects evident at a particular process in a catchment may preclude the use of a Type I model structure due to the
improvement in accuracy afforded by a Type Il model structure.
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Figure 1. Model Schematic for a Single Subarea and a Single Hydrograph Routing Link.
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Figure 2. Model Schematic for Four Sub areas and Two Hydrograph Routing Links.
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