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Abstract

The Complex Variable Boundary Element Method (CVBEM) has been extended into
three dimensions (3D) for solving 3D problems of the LaPlace or Poisson Equation
with boundary conditions. This new advance provides an entirely new field of
opportunity and research for the CVBEM.

At the heart of the 3DCVBEM formulation is the selection of Projection Plane
Vectors (PPV) that are used for the development of CVBEM basis functions. The
more PPVs used, the more CVBEM basin functions are being utilized. Of course, the
PPVs must all be mutually linearly independent vectors. The CVBEM basis
functions depend on both the PPVs, and also the CVBEM nodes used in each 2D
plane resulting from each PPV. The CVBEM nodal placement in each PPV plane is
usually determined by consideration of the problem geometry and boundary
conditions. The choice of the PPVs, however, are somewhat subjective. It is the
goal of this paper to present a method for selecting PPV'’s.
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I Background

The Complex Variable Boundary Element Method (or CVBEM) has been the
subject of numerous publications. The recent book of Hromadka (2002) contains a
review of a wide range of publications detailing CVBEM advances, including
application of the CVBEM to problems in engineering, applied mathematics, and
science. The CVBEM has found utility in studies involving structural engineering,
transport processes (e.g., groundwater flow, sediment flow, contaminant transport,
atmospheric transport, among other topics), atmospheric processes, among other
topics. Like other Boundary Element Methods (BEM), the CVBEM requires nodal
points for numerical solution only on the problem boundary, . Unlike the real
variable BEM, the CVBEM is based on the theory of complex variables and analytic
functions. Until recently, the CVBEM, like the theory of analytic functions, was
limited to two-dimensional (2D) problems domains. The extension of the CVBEM
to three-dimensional (3D) problem domains was accomplished in Hromadka (2001).
The term “3DCVBEM” is used herein to denote this new numerical technique,
because problem formulation between the usual 2DCVBEM and the new 3DCVBEM
differ substantially. Some example problem demonstrations of the 3DCVBEM can
be found on the web site www.hromadka net/3DCVBEM html.

1L Mathematical Model

The 3DCVBEM is used to solve problems involving the 3D LaPlace or Poisson
equations, with boundary conditions specified on boundary T, given by ¢,(x,y,2),
where in problem domain Q,

Vi = f(x,y,2); (x,y,2) € Q (1)
o (xy,2) =6,(xy,2); x,y,z) ET (2)

By determining a particular solution for (1), ¢, then Egs. (1) and (2) can be
rewritten as

V% =0; (x,y,2) € Q 3

¢ xy,2) =4, (xy,2) - 0,(x,y,2); (x,y,2) ET (4)

where the final approximation to Egs. (1) and (2) is %, given by
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0*(x,y,2) = 6 (xy,2) + ¢, (x,y,2) &)

where V% = f(x,y,2) 6

and where ¢ (x,y,z) is approximated by the 3DCVBEM.

Equations (1) and (2) are widely used to mathematically describe a variety of
problems such as transport processes and potential processes, among other topics.

I11. 3DCVBEM Formulation

Let Q be the 3D problem domain enclosed by simply connected boundary, I,
of finite surface area. The 3DCVBEM procedure initiates by enclosing £ within a
sphere; 5,. The sphere is generally selected with a minimal radius, centered at
approximately the geometric center of the geometry of Q (this corresponds to about
the center of mass if the density of Q is uniformly constant). S, is then translated to
be located in the first octant such that the center of S  is a minimum distance from
the 3D coordinate axis origin. That is, S, is tangent to the positive x-y, x-z, and X-y
planes of the first octant.

III.1. Gram-Schmidt Inner Product

The Gram-Schmidt orthonormalization process involves the use of an inner-
product, given in our case by

(f,g) = ] fgdl )
r

where f and g are real-valued and integrable on the problem boundary, I' (see Figure
1). In general, (7) is evaluated numerically, and the approach used herein is as
follows:

Step 1. Define a set of "integration points”, {qj), of uniform density, on the
problem boundary T, (see Figure 2). Number the integration points from 1 to
NI (The uniform density of the {q;} on I can be relaxed and the integral of (7)
can be extended to include a weighting function.)



Step 2. Develop a geometry vector, called "GEOM", of dimension NI,
composed of the coordinates of qi, i=1,2,.... NL

Step 3. For any function used in (7), say f, develop a vector F, of dimension
NI, composed of the values F={f(g;); i=1,2,...NI} (that is, develop a column or
row vector).

Step 4. Approximate (7), by the vector dot product,
NI
(f,8) = (F,G) = 3. f(q) g(q) AT ®)
i=1
where Al is the measure of the incremental boundary containing q;. Note
that as NI = « and A" = 0, then (F,G) = (f,g). Also, the requirement that the

set of integration points be uniformly distributed on I can be readily relaxed
by defining AT, in (8), as an appropriate function of the g;.

III.2. Gram-Schmidt Orthonormalization Process

Given a set of m linearly independent basis functions {fj; j=1,2,...m},
orthonormalization is achieved by using the Gram-Schmidt process, except now we
use the discrete (approximate) vector representation of the set {fj}, noted as {Fj), and
we use the vector dot product (8). The resulting orthonormalized vectors are {Hj;
j=1,2,...,m}.

IIL.3. Determining an Approximation of ¢p on "

To approximate a function ¢p, on I, another vector, dp, of dimension NI, is
developed as ¢p = {0p(q;); i=1,2,... NI}. The best approximation of ¢p on I', noted as ¢*,
is given by

ot =Y (H, 0p) H;. ©)
j=1

By back-substitution, ¢* can be rewritten in terms of the original vectors, Fj, giving

&=Zqﬁ (10)
j=1
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where the @ are the coefficients determined from the usual Gram-Schmidt back-
substitution process from the (H;, op) values (see Hromadka and Whitley, 1993).
Note that as NI ~ ® and A" = 0, the o = Bj where Bj is the Gram-Schmidt coefficient

corresponding to the original basis function, fi and in the original space spanned by
the {f;}
P

o= Bjf;. 11
j=1

II1.4. 2D Geometry CVBEM Basis Functions

The Complex Variable Boundary Element Method, or CVBEM, will be
utilized to generate 2D geometry basis functions to be used in the 3D problem.
Details regarding the CVBEM can be found in numerous papers and books
(including Hromadka and Whitley, 1998) and consequently, these details will not be
repeated here. For our purposes, it is sufficient to state the form of the CVBEM basis
functions (for the case of a linear global trial function used in the CVBEM).

The CVBEM in 2D involves the sum of products of complex coefficients Cj multiplied

by certain analytic functions:
N N
o(2) = 3, Cj(z-2)) Lnj(z-z) (12)
j=1

where 0(z) is the CVBEM approximation in the (x,y) plane; N is the number of
CVBEM basis functions; Cj are complex constants; zj is xj + iyj, the (x,y) plane
coordinate of node j; and Ln; is the complex natural logarithm with branch cut
oriented to lie exterior of Q and not intersecting with other such branch cuts
emanating from other CVBEM nodes. From Euler's formula,

z-7=1;¢'%)

(13)

where 1j is the 2D radial distance from z to zj, and 8jis the radial angle measured
counterclockwise from the branch cut defined at CVBEM node j. From (12) and
(13), the associated 2D CVBEM basis functions are of the form

aj I (cos 9]- In rj - 9; sin 8]-)
or (14)
bj 1j (sin 8 In 1j - 8; cos 0;)
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where the aj and bj are real constants. The choice of the aj and bj are determined by
minimizing the usual least squares residual difference in matching boundary
condition values on the problem boundary.

I.5. 3DCVBEM

The generalized 3DCVBEM approach can be summarized by the following
procedural steps:

Step 1. Determine, approximately, the geometric center of gravity (i.e. supposing
uniform mass density), P, of the problem domain, Q.

Step 2. Define an enclosing sphere, with P, and with radius, Ry, such that the
sphere's surface does not intersect the problem boundary, I' (see Figure 3).

Step 3.  Translate the enclosing sphere, and (, to the first octant, such that the
sphere touches the three orthogonal planes of the 3-coordinate geometry.

Step 4. Define a set of V vectors, vj, i=1,2,...V, each of length Rp, emanating from
the center of the sphere. These vectors will terminate on the sphere's
surface. Do not use vectors that are colinear. Figure 4 depicts five such
orientation vectors in 3D space.

Step 5.  Determine the plane, Pj, orthogonal to vj, and touching the sphere at the
endpoint of vj for each vector, v; (see Figure 5).

Step 6.  For each plane, P, project the vector "GEOM" of ordered integration

points of Q onto the plane (see Figure 6). Note that the projection of the
sphere's boundary, on Pj, is a circle.

Step 7. For each plane, locate CVBEM nodes (the points z; of equation (12)) on the
projected circle of step 6, where each CVBEM basis function branch-cut
(see Equations 12 to 14) lies on an outward ray from the center of the
circle (see Figure 6). For notational simplicity assume that N nodes are
defined for each plane, P;.

Step 8. For each basis function defined on Pj, develop a vector Fij where i = plane
number, j = basis function number (or node number), and Fijis composed



of the basis function evaluated at each of the projected points, from
GEOM, on P;.

Step 9. At this point of the method, there are VN nodes, VN basis functions, and
VN vectors, IFij, i=1,2,.,V; j=1,2,...,.N.

Step 10. Using the Gram-Schmidt method, determine the best approximation to
the problem boundary condition values defined on I". The resulting best
approximation is the 3DCVBEM approximation function. It is noted that
the minimization of residual error, in matching known boundary
condition values over T, is accomplished with respect to all VN vectors,
lFij, simultaneously.

IV. 3DCVBEM Projection Plane Vector Selection

At the heart of the 3DCVBEM formulation is the selection of Projection Plane
Vectors (PPV) that are used for the development of 2DCVBEM basis functions
(Hromadka, 2001, 2002). The more PPVs used, the more CVBEM basin functions are
being utilized and the better the approximation in a Hilbert space setting. Of course,
the PPVs must all be mutually linearly independent vectors. The CVBEM basis
functions depend on both the PPVs, and also the CVBEM nodes used in each 2D
plane resulting from each PPV (see previous CVBEM Formulation discussion). The
CVBEM nodal placement in each PPV plane is usually determined by consideration
of the problem geometry and boundary conditions, the choice of the PPVs, however,
are somewhat subjective. It is the goal of this paper to present a method for selecting
PPV’s.

IV.1. PPV Selection Approach

The enclosing sphere, S, is used to develop the PPV projection planes
(Hromadka, 2001, 2002). Let S, be populated with a nearly uniform density of points,
{P,, k =1,2,... M} located on the surface of only one hemisphere of 5,. These points
on S, will be used for PPV development and selection.

The procedure begins by developing 3DCVBEM models based upon only 1
PPV. Here, a PPV is defined as a vector originating from the center of S, and
intersecting S, at one of the points in {P,}. Because there are M points on S, there
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are M 3DCVBEM possible models to consider (assuming all such PPV are linearly
independent). The best 3DCVBEM model, based upon 1 PPV, is that model with the
smallest least squares residual in matching the problem boundary conditions, ¢,, on
I'. This best model is associated with PPV1.

Now, the best 2-PPV 3DCVBEM model can be determined for the given set of
points (P} defined on S, by considering the (M-1) 3DCVBEM 2-PPV models, all
including PPV1 (again, all PPV are assumed to be linearly independent). The second
best PPV is that PPV resulting in the smallest residual in matching ¢, onI'. The best
2-PPV 3DCVBEM model is based upon use of the vectors {PPV1, PPV2).

Continuing, there are M-2 remaining points of {P,} to consider in
determining the third best PPV, given that PPV1 and PV2 are also used, for the best
3-PPV 3DCVBEM model. Similar to the above, PPV3 is selected, and the best 3-PPV
3DCVBEM model is determined.

The above process is continued until either all points on S, are used
(a M-PPV 3DCVBEM model), or an acceptable residual error is achieved. (It is this
author’s experience that a 5-PPV 3DCVBEM model oftentimes produced acceptable
results).

V. Applications

Several application problems, or demonstrations, of the above approach can
be found at the web address www.hromadka.net/3DCVBEM.html. The reader is
referenced to this web address.

VI. Conclusions

In the 3DCVBEM vectors are used to develop 2D plane surfaces upon which
the problem boundary and domain are projected onto. In general, under mild
conditions, the more 2D planes used, the better the 3DCVBEM approximation. A
method to select such projection planes is presented in this paper. Using this
method, a 3DCVBEM model can be developed with a goal of reducing
computational effort. The method has been applied to several 3D problems, with
good results. This approach is readily programmable.
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Figure 1. Example 3-D Domain



Figﬁre 2. 3-D Domain and Integration Points



Figure 3.

3-D Domain and Enclosing Sphere
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Figure 6. Projected Integration Points and Enclosing Circle.
Note Local Coordinates (x",y").



