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ABSTRACT

Over the past two decades, the Complex Variabie Boundary Element Method (CVBEM) has received
increasing attention from engineers and applied mathematicians. The method is used quite often in a variety
of enginecring and physical science applications. However, until recently and unlike the more commonly
used Real Variable Boundary Element Method (RVBEM), the CVBEM could only be applied in a two
dimensional geometry. However, current developments have expanded the-CVBEM te 3 (or higher)
dimensions, eliminating the two-dimensional geometry barrier. In the following pages, we take a brief look
at how the 3D CVBEM is applied to a problem with a nonconvex and multiply connected geometry, and
draw a conclusion as to how this modern method compares to its real variable counterpart. '

2 BACKGROUND FOR. THE COMPLEX VARIABLE
BOUNDARY ELEMENT METHOD
The Complex Variable Boundary Element Method (CVBEM) is used to develop an approximation

' function that satisfies the Laplace equation (sz = () throughout the interior of some problem
domain, Q. - The values of the approximation function approach the values of the exact solution of
a boundary value problem, for all points on the boundary, by means of a least-squares error
minimization. .

The problem is set up in a simple form as follows (see Hromadka and Whitley, 1998, and
Hromadka & Lai, 1987). Let & be a two-dimensional, (2D) simply-connected domain with a

simple closed contour boundary, I. Let o(xy) and W(x,y) be two-dimensional harmonic
functions over Q \U I, that satisfy the Cauchy-Riemann conditions,
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Being harmonic, they both satisfy the Laplace equation,
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If z = x + iy is a complex variable, th_en ¢(x,y) and w(x,y) can be written as ¢(2) and y(z). An

analytic function o(z) is defined over Q U T as 0(z) = ¢(z) + iy(2). The contour boundary, T,
is subdivided into m boundary elements with nodes specified at each element endpoint (for the
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case of a linear trial function on I'). The boundary elements are given by I'j and the endpoints are
given by zj for j =1, 2, ...m. Function values are determined at the nodes using the function

values m(zj).t A global trial function for o{z) is determined for z in I” by
.
. G(z) =2l [m(z'j) Nj(z) + o(zj+1) Nj+1(z)]_, 3
j=
where the NJ ate the usnal linear basis fimctions.

Then the CVBEM develops a two-dimensional approximation function 8(2) of w(z) by

~ G
co(z)=§}§ —‘%df;. @
r

The benefit of using this method comes from the fact that it minimizes the Ly norm of the

difference between 8(2) and o(z) on the boundary of the domain, I'. Because @)(2) is analytic, its
real and imaginary parts are harmonic in L.

2.1 Applying the Problem to Three Dimensions (3D)

Choosing a domain and boundary in three dimensions further complicates the CVBEM problem.
Details as the theoretical extension of the CVBEM to three dimensions. is given in Hromadka
(2001). Also contained in Hromadka (2001) are the application procedures and computer
programs to implement the 3D CVBEM. To proceed, we take the subject three-dimensional
object and approximate its center of mass. The object is located with a sphere whose radius is
slightly larger than the maximum distance from the center of mass to the furthest point on the
surface of the object (i.e., an enclosing neighborhood). The enclosing sphere is then translated to
the first octant of the 3D space so that all coordinates are positive. The new local coordinate
system is denoted by (x*,y*,z*).
"~ We then define a set of projection planes outside of the domain. These projection planes are
defined as orthogonal to a set of specified vectors whose originating endpoints are located at the
approximated center of mass (i.c., the center of the enclosing sphere). The planes should be
distinct and not parallel (see application problem). Finally, the planes are also tangent to the
enclosing sphere at the intersection of the corresponding vector with the surface of the sphere.

Next, define a set of integration points on the three-dimensional boundary, I'. These points are
used for the numerical integration process such as used in the usual 2D CVBEM. These
integration points are then "projected” on to each of the projection planes. A circle generated by
projecting the enclosing sphere onto the plane will surround each of the two-dimensional figures
on each of the respective planes. The number of CVBEM nodes for each plane are specified, and
these nodes are placed on the circumference of the projected circles. The resulting two-
dimensional figures are analyzed using the 2D CVBEM and the local coordinate system,
("2,

Finally we choose a set of test points (other than integration points) on I" that will be used to
determine the accuracy of the method in comparing an available exact solution to the boundary

value problems.
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2.2 The RVBEM Model

In comparison, the 3D RVBEM used is a linear combination of basis functions of the form 1/Ry,
where R} is the usnal 3D Euclidean distance from RVBEM node k, and the RVBEM

approximation, B(x,3,2), is given by

n
B(x,y,2) =Y, Ck/Rk . ©)
where n nodes are employed. The Cy are k=1 constants determined by 2 least-squares error
minimization fit to the problem boundary conditions, using the same set of problem integration
points defined on I" as used in the 3D CVBEM. Also, the same set of nodes are used for both
BEM test trials. :

3 TEST PROBLEM DESCRIPTION :
Several 3D problems were considered in the current research. The presented application problem

is typical of the set of problems considered. .
Consider a multiply connected irregular 3D domain which measures 5 units in width, 32 nnits

in length, and 21 units in height (see figure 1). It is noted that the problem boundary, as well as
ihe two interior holes are irregnlarly shaped and have numerous vertices and cusps. ‘
The approximate center of mass for our shape is estimated at the point (X,y,2) = (3.5, 15.63,
10.77). Notice that there are two holes in our shape, and the diameter for each is set at 2 units.
Inside these holes we have source points, Py and Pp, located at the centers of the holes and
another source point, P3, located 2.5 units from the right lower corner of our shape. Suppose
there is a temperature flow over and inside our domain so that the temperature becomes the
potential function we wish to estimate. We are given that the function values at P1, P2, and P3 as
500, 1000 and 500 respectively. The exact solution, which is used for testing the two boundary

element methods, is given as

F(pj) = %Q?+%Qf+% ©6)

where point pj is in Q, and each

R G P G0, Y T G 2P 17125 ®

Equations (4) and (5) are used to establish test problem boundary conditions, and also provides the

exact solution to compare with numeric results.
Five projection planes with six basis function nodes Jocated on each projection are used for the

3D CVBEM. Thus, a total of 30 CVBEM basis functions are used in the approximation. Each
projection plane is determined by defining vectors emanating from the domain's center of mass fo
2 new location which is to be the center of the 2D disk projected onto a plane from the 3D sphere.
These displacement vectors are used in such a way that their lengths extend outside the enclosing

sphere. The vectors used are (-3.5, 0, 0), (0, -1 5.63, 0), (0, 0, -10.77), R (122 ,0, %)

and R |0, ﬂ ,ﬂ) , where R is the radius of the enclosing sphere. Once these vectors are

located, a projection plane perpeadicular to these vectors is calculated. The first three planes run
parallel to the XY, X7, and ¥Z planes. The last two projection planes are af an angle of 45° from

the XZ plane (see figures 2 & 3).
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Each projection results in an image of a circle with 6 CVBEM nodes evenly spaced along the

perimeter. When using the CVBEM program, the position of the nodes is automatically computed

~and used to compute an approximation for the exact solution. These nodal locations are also used

for the RVBEM of (5):

: 4 RESULTS AND CONCLUSIONS
The information below details the resuits from applying the two methods to the test problem.

‘Table 1: 3D CVBEM Results

STATISTICS ON TEST POINT SET:

NUMBER OF TEST POINTS = 831

SUM OF SQUARED RESIDUAL = .2364D+07
MAXIMUM VALUE OF APFROXIMATION = 4967E+03
MINIMUM VALUE OF APPROXIMATION = .9288E+02

MAXIMUM ABSOLUTE DIFFERENCE = .5364D+03
AT LOCATION: TEST POINT #412; EXACT = ,9401D+03; APPROX. = .4037D+03; MAX ERROR =

5364D+03;  RE = .5906D+00
MAXIMUM RELATIVE ERROR = 5706D+00; AVERAGE RELATIVE ERROR =-.1199D-001
AT LOCATION: TEST POINT #412; EXACT = .9401D+03; APPROX. = .4037D+03; ERROR =

5364D+03; MAXRE = .5706D+00

Table 2: 3D RVBEM Results

STATISTICS ON TEST POINT SET:

NUMBER OF TEST POINTS = 831

SUM OF SQUARED RESIDUAL = .2993D+07
MAXIMUM VALUE OF APPROXIMATION = .4557E+03
MINIMUM VALUE OF AFPROXIMATION = .1110E+03

MAXIMUM ABSOLUTE DIFFERENCE = 5637D+03
AT LOCATION: TEST POINT #412; EXACT = .9401D+03; APPROX. = .3764D+03; MAX ERROR =

5637D+03; RE=.5996D+00

MAXIMUM RELATIVE ERROR = .5996D+00; AVERAGE RELATIVE ERROR = -.1678D-01
AT LOCATION: TEST POINT #412; EXACT = .9401D+03; APPROX. = .3764D+03; ERROR =
.5637D+03;

MAX RE = .5996D+00
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Examining the sum of square residuals and the average relative error, we conclude that the
CVBEM produces the smaller error. The average relative error for the CVBEM is about 1.2% of
the true value of our potential fenction, In comparison, the RVBEM produces an average relative
error of about 1.7%. Consequently, it would seem that the CVBEM is the better method for
estimating the actual potential function for our problem. Although the CVBEM seems to be
superior over the RVBEM, observing the maximum absolute difference between two methods
gives us added insight in comparing the two methods. The CVBEM shows this value to be 536.4
while the RVBEM show the same statistic as 563.7.

In the accompanying figures, we compare exact and approximate solutions in addition to
absolute and relative errors at our test points, Focus is paid on both sides of the 3D object (x=1;
x = 6), and also on a slice through the center of the object (x = 3.5). The figures provide an added
insight as to where upon the object the two methods fared best and serve to identify arcas
requiring further investigation into how to reduce these errors.
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6 LIST OF FIGURES

Figure 1. 3-D Object in Y-Z Plane (Uniform Thickness).
Figure 2. Example Problem'’s Enclosing Sphere with 5 Projection Planes.
Figure 3. ¥-Z Axis View of Figure 2. .
Figure 4. Problem domain within enclosing sphere, with

‘ basis nodes projected onto the five project planes.
Figure 5. Exact Solution Plot on 2D slice at X'= 1.

Figure 6. CVBEM Approximationsat X=1.

Figure 7. RVBEM Approximations at X = 1.

Figure 3. CVBEM Approximation Exror at. X=1.

Figure 9. RVBEM Approximation Error at X = 1.

Figure 10. CVBEM Relative Errorsat X' = 1.

Figure 11. RVBEM Relative Errors at X = I.

Figure 12. Exact Solution Plot at.X= 3.5 (slice through center of ).
Figure 13. CVBEM Approximations at.X = 3.5.

Figure 14, RVBEM Approximations at X'=3.5.

Figure 15. CVBEM Approximation Error at X = 3.5.

Figure 16. EVBEM Approximation Error at X'=3.5.

Figure 17. CVBEM Relative Errors at X=3.5.

Figure 18. RVBEM Relative Errors at X=3.5.

Figure 19. Exact Solution Plotat X=6.

Figure 20. CVBEM Approximations at X = 6.

Figure 21. RVBEM Approximations at X = 6.

Figure 22. CVBEM Approximation Error at X'= 6.

Figure 23. RVBEM Approximation Error at.X'=6.

Figure 24. CVBEM Relative Errorsat X'=6

Figure 25. RVBEM Relative Errors at X=6.
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Figure 1: 3-D Object (Uniform Thickness) in Original Y-Z Plane, showing integration point
coverage on problem boundary. Note two holes in the problem domam.

Z*-axis

Figure 2: Example problem enclosing sphere with resulting circles from projecting sphere onto 5

projection planes
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Y*-axis

Figure 3; Y-Z axis View of Figure 2. Note resulting 5 circle projections.

*-aids

y-axis

Figure 4: Problem Dornain within Enclosing Sphere with CVBEM (or RVBEM) Basis Nodes
projected onto the 5 Projection Planes. Basis nodes (total of 30) are shown as the large dots on
the projected circles.
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Figure 5: Exact Solution Plot at X =1 (local coordinate X* = 17.17).
B Nate irregnlar boundary containing numerous vertices.
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Figure 6: CVBEM Approximations at X = 1 (local coordinate X* = 17.17).
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RVBEM Approximations at.X = 1 (local coord

Figure 7

Figure 8: CVBEM Approximation Ervor at X= 1 (local coordinate X* = 17.17).
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RVBEM Approximation Error at X = 1 (local coordinate X* = 17.17).

Figure 9

inate X* = 17.17).

CVBEM Relative Errors (decimal) at X' =1 (local coord

Figure 10
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Figure 12: Exact Solution Plot at Slice through center of 3, X=3.3
(local coordinate X* = 19.67).

13
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Figure 13: CVBEM Approximations at X = 3.5 (local coordinate X* = 19.67).
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Figure 14
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CVBEM Approxiniation Error at X
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Figure 15

=19.67).

Figure 16: RVBEM Approximation Error at X = 3.5 (local coordinate X*
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Figure 17. CVBEM Relative Errors {decimal) at X'= 3.5 (local coord

inate X* = 19.67).

3.5 (local coordinate X* = 19.67).

Figure 18: RVBEM Relative Errors (decimal) at X
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Figure 19: Exact Solution Plot at X

22.17).

6 (local coordinate X* =

=22.17).

6 {local coordinate X*

Figure 20: CVBEM Approximations at X' =
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Figure 21

6 (local coordinate X* =22.17).

Figure 22: CVBEM Approximation Error at X
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6 (local coordinate X* = 22.17).
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Figure 23
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Figure 24: CVBEM Relative Errors (decimal) at X= 6 (local coordinate X* = 22.17).
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Figure 23:



