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Abstract

The Complex Variable Boundary Element Method, or CVBEM, is extended
to solve three (or higher) spatial dimensions. This new advance breaks
down a barrier that has limited the CVBEM to two dimensions. The new
3DCVBEM is easy to apply, and does not require spatial transformation to
particular spatial domain shapes. The 3DCVBEM can be applied to
arbitrary spatial shapes. In this paper, the mathematical underpinnings are
reviewed, and the associated numerical algorithm is considered.
Application of the 3DCVBEM to 3D problem shape is considered for a

Dirichlet problem.

1 Introduction

The Complex Variable Boundary Element Method [Refs. Hromadka and
Guymon [3], Hromadka [4], Whitley and Hromadka [7]], or CVBEM, is a
numeric technique used in solving, in an approximation sense, two-
dimensional (2D) potential problems or 2D Poisson problems.

Recently, the 2D CVBEM has been extended to three-dimensional
(3D) problems (see Hromadka, 2000) [2], and Hromadka and Whitley
(2001a,d) [5), {6). This was accomplished by applying the CVBEM to
three coupled projections of the 3D problem domain, in orthogonal 2D
planes, and then superimposing the resulting 2D CVBEM solutions. In this
paper, the new 3D CVBEM is fully generalized by applying the CVBEM to
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Theorem 1
Let f(z) be a function analytic in a disk D(zg, r), where it is not a

polynomial; using Lemma 1 we can suppose that (1) holds. Let Q be a
domain in R®, with R? - Q) connected, which satisfies an external cone

condition at each boundary point; and let g(x) be a continuous real-valued
Sunction on I" and € > 0 be given. There are complex constants cj and

vectors ol and b in R% j=12.. Nwith

@ebi=0and |ai| = |vi| <7, )

for any r for which (2} implies

ldjex+ibiex| <p, (3)

for all x in £, so that the function

N
hix) =Re [} ciftzg + (@ +x +i b/ =), 4)
j=1

defined and harmonic on £, satisfies

| h(x) —g(x) | < gforxint. (5)

Consequently for all x in £, h(x) is within € of the exact solution u(x) to
the Dirichlet problem with boundary data g.
The proof of Theorem 1 (Whitley and Hromadka, 2001c) [1],

shows that the vectors & and &/ appearing in the approximating sum may be
taken to have a special form where @ has only one non-zero coordinate and

bl is zero in that coordinate, @/ and &/ still being required to have the same

length.

Using the above results, the CVBEM can be generalized into three
or more geometric dimensions. In this paper, we will focus on the
generalized 3-dimensional (3D) approach, and develop the corresponding
numerical model to apply the 3D CVBEM to novel test problems.
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4 Applications of the 3D CVBEM

In all of the application problems considered, a (small) set of five projection
planes were used, all with the same 3D orientation about the problem
domain's enclosing sphere. Additionally, although other Dirichlet problems
were examined, only a single common Dirichlet problem is presented in this
paper for brevity. The problem considered is a 2 source and 1 sink
temperature problem where the sources and sink are located closely to the
3D problem boundary in order to more vigorously test the 3D CVBEM.
The exact solution to the test problem is T(x,y,z) where

T(x.y,2) =-S00/[(x=5)2 + (y-0)2 + (z+2)%]1/2
+ 10000/[(x-0)2+(y+0.1)2 + (z-5)2]1/2 (6)
+ 100/[(x~0)2 + (y-5)2 + (z—6)2]1/2

and (x,y,z) are the 3D coordinates. The problem boundary conditions are
simply the above T{(x,y,z) evaluated at the problem boundary's integration
points. For each problem geometry, the exact solution results, from (6), and
the 3D CVBEM results, are plotted along selected 2D surfaces of the 3D
domains or boundaries. For each problem considered, only four CVBEM
nodes are used, evenly spaced, on each projection plane; with five
projection planes used in the approximation, a total of 20 CVBEM nodes
are employed; this small number of nodes is shown to give high accuracy in

the example below.

Solid Sphere ‘
For a sphere, of radius 2.5 units, the temperature results can be plotted on

the sphere's surface for the "north hemisphere" and the "south hemisphere”.
Figure 1 shows the sphere's orientation, the integration points, and the
locations of the sink and two sources. The exact solution, and the CVBEM
approximation, respectively, are depicted on Figures 5a,b, for the north
‘hemisphere. Similar depictions are provided on Figures 5¢,d, for the south

hemisphere.

Conclusions

The CVBEM has been successfully generalized for solving 3D Dirichlet
problems based on new mathematical results. In this paper, the
mathematical underpinnings of the 3D CVBEM are reviewed, and several
3D geometries are examined. From the results and the experience gained
from the applications, the new 3D CVBEM appears to have considerable
promise for research and industrial calculations.
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Figure 2: 5-Projection vectors
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Figure 5: Sphere problem with five projection planes, vector displacements
from center of sphere: (0., 0., -2.5), (0., -2.5, 0.), (-2.5, 0., 0.),
(2.5,2.5,2.5)and (-2.5, 2.5, -2.5)



