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The solution to any 2-dimensional potential problem, with continuous data given on the boundary of a
bounded domain with connected complement, can be approximated by sums

Re Z Cnf(anz + zU)a

where [ is any preassigned non-polynomial analytic function>@© 2001 Jobn Wiley & Sons, Inc. Numner Methods
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An important applied problem is the Dirichlet problem for a 2-dimensional potential:

2 a bounded plane domain with boundary I" and the complement of §2 U I" connected

g a given continuous real-valued function defined on I'. (1)

Find a function u harmonic in £2 and continuous on 2 U I’ withu = gon I'.

The Complex Variable Boundary Element Method (CVBEM) [1] for approximating the so-
lution to this problem involves the numerical determination of parameters so that the analytic

function h

N
h(z) = co+chz+ Y culz = fu)logg, (2 — Fn) (2)

n=1
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We claim that the closure of M, cIM, equals cIP(K):
M = cP(K). 9)

If this is not true, there is a function ¢4y in cIP(K) whose distance from M is positive:

mf{[|Qu — ¢l : ginM} >4 > 0. (10)

Because (3 belongs to cIP{K), there is a polynomial P with ||Qy — Ful| < g, and, thus,

. . 4]
inf{||Fy — g|| : gmM}>-2-. (11)
By the Hahn-Banach theorem, there is a continuous linear functional * on C'(K) with
(M) =10 (12)

and

L

Because (12) holds, z* (wy) = 0 for all || < r. Because w,, has a power series about zero that
converges uniformly on K, i.e., in the norm of C'(K), the continuity and linearity of z* allow us
to write
oo
0=a"(ws) = Z apatet (2. (14)

=0

Because the power series (14} in the variable « is identically zero for a in B(0, ), its coeffi-
cients must all be zero, and because nla,, = f{")(z,) # 0, this implies that z*(z") = 0 forn =
0,1, ...; hence, x*(Fy) = 0, contradicting (13).

To complete the proof, the Walsh Lebesgue Theorem [5, p 173], states that, for the Dirichlet
problem (1) above, given e > 0 there is a polynomial P, with |ReP;(z) — ¢g(z)| < ¢ holding
on I". By what has been shown, the subspace M spanned by the w,, is (uniformly) dens¢ in the
closure of ¢IP(K) of the polynomials, and so there is a sum of the form (6) that approximates P
to within € on K, and that, therefore, satisfies |Reh(z) — g(2)| < 2e for zon I -

The hypothesis that f not be a polynomial is necessary, for if f is a polynomial of degree m,
then the sum (6) is a polynomial of degree less than or equal to m, and (7) cannot hold for all
¢ > [} and all continuous g.

An examination of the proof of the theorem shows that the parameters {«, } appearing in the
approximating sum (6) can be restricted to lie in any given infinite subset of B(0, r}, which has
a limit point in B{0, ).

Under weak hypotheses on the boundary I', the theorem implies that a given boundary value
function g in LP(I") can be approximated in the L”([') norm by a sum of the form (6); see the
proof of Corollary 2 in [3].

Note that, if f is analytic on B(zg, p) and (5) holds, the same is true for the derivative f’ and
is also true for any anti-derivative F', provided that F'(zg) # 0.

To establish the connection between the sums (2) and (6), begin by considering the function
1. Two integrations give the function

flz) = —z+ zLog(z), (15)
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satisfies
|Reh(z) - g(z)] <¢, forzonT (3)
from which
[Reh{z) — u(z}] < e, forzin QU 4)

follows from the maximum principle. (The subscript on the complex logarithm refers to the branch
cut chosen, for which see [2].) The proof that it is possible to approximate the solution by sums
of the form (2) is given in [3].

The form of the approximate solution (2) raises the question of the exact role played by the
function f(z) = (z — B} log(z — /3). Can similar approximation results be obtained using other
functions? This question is answered here by showing that a surprisingly large class of analytic
tunctions can be used in approximations of the same general type as (2).

The ease with which one of our hypotheses can be satistied is made clear by an elementary
Lemma [4, Ex. 2, page 227].

Lemma 1. Let f be anaiytic on a ball U = B(z,p) = {2 : |z — z1| < p}. If fis not a
polynomial on U, there is a point 2y in U, where every derivative of f is nonzero:

F(z,) # 0, n=0,1,~ .. (5)

Proof. Let Dy, = {zin U : f{™(z) = 0}.1f (5)fails tohold, then U = U{D,, : n = 0,1,...}.
Then any closed uncountable subset of U intersects at least one D,,, in an infinite set with a limit
point in U; by the identity theorem, ") is then identically zero and f is a polynomial. .

Note that because the ball in the Lemma can be chosen to have any positive radius less than
or equal to the original radius p, the point 2p can be taken to be arbitrarily close to the original
center zy.

Theorem 2. Consider the Dirichlet problem (1). Let f be analytic on a ball B(zq, p), where it
1s not a polynomial; using the above Lemma, we can suppose that (5) holds. Then for any given
¢ > () there is a sum

N
'}T/(Z) == Z C'n.f(ﬂnz + ZU) (6)
n=0

that is analytic on €2 and continuous on £ U [, with
|Reh(z) — g{z)| < eforzon . (7)

Consequently, Reh is a harmonic function that is within e of the exact solution to the Dirichlet
problem.

Proof. Because K = QU I' is compact, there is a ball B(0, R) that properly contains K. If
la| <r =&, flaz + z) is analytic for z in a neighborhood of K.

The space C'(K) is the Banach space consisting of all continuous functions on K taken with the
supremum norm. Let ¢IP(K) denote the closure of the subspace of all polynomials P(K) in C{K).
For each fixed value of a in B(0,r), let w,, denote the function given by w,(z) = f{az + z). Let

M = splw, @ |a] < v} (8)

be the vector subspace of C'(K') spanned by the indicated set of functions w,. Because w, is
analytic on a ball containing the compact set K, the partial sums of its Taylor’s series about zero
converge uniformly to it on K, which is to say that w,, belongs ro cIP(K).
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where Log(z) has as branch cut the nonnegative x-axis. For z; = —1, the functions
wa(z) = —{az — 1) + (az — 1) Log(az — 1) (16)
are analytic on B(0,1) for || < 1.
Because
(z — B)logs(z — B) (17)
and
B(57 - L)Log(2 ~ 1) ()
S og{=z —
B B

both have the same second derivative, it follows that on a common connected domain of analyticity
these two functions differ by a linear function of z. If | 3] > R, where K is contained in B(O,R),
then the functions in (17) and (18) will both be analytic on X' = Q U I". Combining all the linear
terms into the first two terms, (2) can be written as

N
1 1
a(,—f—a'ﬂz—l-Zan(ﬁ—z— 1)Log(5-p 1), (19)

n=1
Al

in direct correspondence with (6).

One aspect of the CVBEM approximation that does not follow from the theorem is that the
nodes {f3,,} in (2) can be chosen to lie on I, a result that depends on the specific structure of
the logarithm and requires the use of curvilinear branch cuts, if £2 is not convex. This is useful
numerically, because more nodes can be placed on the sections of I, where the boundary function

g changes more rapidly.
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