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ABSTRACT
In this note, the primary focus is to introduce an extension of the two-dimensional (2D)) CVBEM to solve potential problems
in a three-dimensional (3D) spherical geometry problem domain. This is achieved by (1) applying the CVBEM to three
coupled projections of the 3D sphere, onto orthogonal 2D planes, and then superimposing the resulting corresponding 2D
CVBEM solutions, and (2) rotating the problem domain and reapplying the previous step (1). Although the current paper only
addresses a spherical geometry the resulting numerical approximations demonstrate the utility of using a 2D boundary ele-
ment method, such as the CVBEM, towards solving 3D potential problems on other 3D geometries.

1 INTRODUCTION

The Complex Variable Boundary Element Method, or CVBEM, is a numerical technique for use in
solving, in an approximation sense, two-dimensional (2D) potential problems or 2D Poisson prob-
lems. The considerations of multiply connected regions, i.e. problem domains that contain holes,
and various types of boundary conditions, e.g. flux or Dirichlet type, has been examined in detail in
various publications, including the recent book of Hromadka and Whitley (1998). Applications of
the CVBEM to a wide variety of practical problems is also reported in the literature, sec the cited
reference. Ever since the introduction of the CVBEM, e.g. Hromadka and Guymon, 1984, the
CVBEM has been limited to solving potential problems in 2D.

Recently, the 2D CVBEM has been extended to solve three-dimensional (3D) problems, sece
Hromadka, (2001) and Hromadka and Whitley (2001a.b). This is accomplished by applying the
CVBEM to three coupled projections of the 3D problem domain, in orthogonal 21) planes, and then
superimposing the resulting 2D CVBEM solutions. The cited references include several numerical
applications that demonstrate the utility of using a 2D boundary element method, such as the CVBEM,
towards solving 3D potential problems with Dirichlet boundary conditions. In the current research,
the new 3D CVBEM is enhanced by considering application of the CVBEM to rotations of the
problem domain, €2, and adding the resulting approximations.

The use of two-dimensional (2I}) basis functions to solve the Laplace equation in three dimen-
sions (3D) provides some interesting theoretical and practical advantages. For example, 2D basis
functions of the lnr type do not exhibit the singularity behavior demonstrated by the 3D basis func-
tions of the Ur type. Convergence properties are readily established such as given in the proofs
provided by Whitley and Hromadka (2001). The use of complex variable functions to solve poten-
tial problems provides the benefits of conjugate functions that relates, in 2D, potentials to stream-
lines. Although this paper only deals with a spherical 3D geometry problem domain, this work
provides the underpinning for extending the approach towards generalization to arbitrary 3D geom-
etry problem domains.

2 MATHEMATICAIL FORMULATION OF PROBLEM
The three-dimensional (3D) potential problem considered is to sotve the PDE
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d’¢ ¢ 9’ .
axf + ayf + az‘f =0 in Q (1)

with Dirichlet boundary conditions ¢ = ¢p on I', where Q is the 3D domain with boundary T; ¢ is the
3D potential function; and x,y,z are the usual Cartesian coordinates. For development purposes, Q is
assumed to be simply connected (no holes in the interior of ).

3 GRAMM-SCHMIDT APPROXIMATION SETTING (HILBERT SPACE)
The approximation technique being considered is to define a particular set of basis functions, and
then to determine the best approximation in a least squares error minimization sense, i.e. a Hilbert
space setting, see Hromadka and Whitley, {1993). In this case, the best approximation is determined
by the usual Gramm-Schmidt process, with respect to the assembled set of basis functions in match-
ing the value of the boundary conditions, ¢4, on I' (again, see the above cited references). For the
reader’s convenience, a brief overview of the necessary steps is presented.

3.1Gramm-Schmidt Inner Product
The Gramm-Schmidt orthonommalization process involves the use of integrals of the form (f,g),
known as an inner-product, given by

(f.8)=] fg dr @

where fand g are integrable on I". In general, expression (2) is solved numerically, and the approach
used herein is as follows:

¢ Step 1. Define a set of “integration points”, {pj}, of uniform density, on the problem
boundary I. Number the integration points from 1 to NI. The uniform density of the
{pi} onT canberelaxed if the integral of expression (2) is extended to include a weighting
function.

s Step 2. Develop a GEOMETRY vector, of dimension NI, composed of the coordinates
of pi, i=1,2,... NL

s Step 3. For any function used in expression (2), say £, develop a vector F, of dimension
NI, composed of the values F={{pj); i=1,2,...NI}, i.e. develop a column or row vector.

® Step4. To approximate expression (2), use the vector dot product,

N
(7.8)>(F.G)= Y f(p.)s(p)AT 3)

i=1
where Al is the measure of the incremental boundary associated to pi. It should be
noted that as NI — ccand AI" — O, then (F,G) — (£,g). Also, the requirement that
the set of integration points be uniformly distributed on I" can be readily relaxed by

defining AT, in expression (3), as a function of the p.

3.2 Gramm-Schmidt Orthonormalization Process

Given a set of m linearly independent basis functions, i.e. basis dimension m, noted as {t}; F1.2,...m},
orthonormalization is achieved by using the Gramm-Schmidt process, except now we are in a
vector representation of the set {fj}, noted as {Fj}, and we use the vector dot product given in
expression (3). The resulting orthonormalized vectors are {H; j=1,2,...m}.
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3.3 Determining the Best Approximation of ¢, onT
To approximate ¢, on I', another vector, ®y, of dimension NI, is developed as

(S {¢b (pl.); i=12,...,NI } The best approximation of ¢, on T', noted as *, is given by

0*= (H,.0,)H, @
i=t
By back-substitution, ¢ can be rewritten in terms of the original vectors, Fj, giving

¢F = ZO{ jf’:,. (3)
=1

where o, are the coefficients determined from the usual Gramm-Schmidt back-substitution process

from the (H,, ¢,) values, sec Hromadka and Whitley, (1993). Note that as NI — coand AT - 0,
then aj—>ﬁj, where B. is the Gramm-Schmidt coefficient corresponding to the original basis func-
tion, f;, and in the original space spanned by the {t}}, we have

9*=> B.f, ©
j=

4 APPROXIMATING 3D POTENTIAL FUNCTIONS

USING 3D BASIS FUNCTIONS FROM THE CVBEM
In the previous section, the focus of the Gramm-Schmidt procedure was to minimize (¢*-d)onT.
No attention was paid to how ¢* relates to the interior of Q. In this section, the choice of basis
functions will be addressed such that ¢* exactly solves the PDE operator equation, L(*) = 0, where
L is given by

d*(e) . 9*(e)  0%(e)
ox? * oy’ * oz*

and where (*) is a function that is twice differentiable with respect to x, v, and z.

L(o) =

9

4.1 2D Geometry CVBEM Basis Functions
The Complex Variable Boundary Element Method, or CVBEM, will be utilized to generate 2D
geometry basis functions to be used in the 3D problem setting of Eq. (7). Details regarding the
CVBEM can be found in numerous papers and books, including Hromadka and Whitley, (1998),
and consequently, these details will not be repeated here. For our purposes, it is sufficient to state
the form of the CVBEM basis functions for the case of a linear global trial function used in the
CVBEM.

The CVBEM involves the sum of products of complex coefficients multiplied by analytic
functions of the form

é‘)(z):icj(z—zj)l,nj(z—zj) | (8)

where c?)(z) is the CVBEM approximation in the (x,y) plane; N is the number of CVBEM basis
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functions; C, = (3, — ib) are complex constants; z, is x; iy, the (x.y) plane coordinate of node j; and
Ln, is the complex natural logarithm with branch cut oriented to lie exterior of Q and not intersect-
ing with other such branch cuts emanating from other CVBEM nodes. Again it should be noted that
z is used for the third coordinate in a 3D geometry, and also it denotes the complex variable. From
Euler's formula,

z—z;=re’ ®

where I is the 2D radial distance from z to z, and Bj is the radial angle measured counterclockwise
from the branch cut defined at CVBEM node j. ¥rom equations (8) and (9}, the associated 2D
CVBEM basis functions are linear combinations of

ajrj(cosﬂjlnr} —Bjsint?j) or bjrj(sinaj Inr, —jSosej) (10)

where the a and b, are real constants. The choice of a and b, is determined by minimizing the usual least
squares residual difference in matching the boundary condition values on the problem boundary.

By rewriting the complex variable in terms of the other spatial coordinates, using x+iz or
y+iz, the CVBEM basis functions (10) are readily extended into the other 2D (x,z) and (y,z) planes,
resulting in another set of extended 2D basis functions.

The CVBEM formulation involves the use of three sets of 2D plane nodal points, one set of
nodes being defined for each of the three orthogonal 2D planes. The approach used herein is de-
scribed as follows:

¢  Step 1. Define the 3D problem domain (sphere) to bave geometry coordinates all greater
than zero, i.e. if necessary simply translate the 3D QUT",

*  Step 2. Project the 3D QUT onto the (x,¥) 2D plane. The 20 projected domain is
denoted by Qyy with boundary I'xy. Similarly, project QU onto the 2D (x,z) and
(v:z) planes, resulting in Qyy and I'yy, and £y, and I'y,, respectively.

e Step 3. Define CVBEM nodes in the {x,y) 2D plane, all located exterior of Qxy, but
arbitrarily close to or on I'yy. Similarly, define other CVBEM node sets corresponding
to I'xz and Ty, respectively.

s Step 4. Develop CVBEM basis functions of the form (12), with respect to each node,
corresponding to the I'xy, I'xz, and I'yz surfaces, in the (x,y), (x,z), and (y,2) planes,
respectively.

5 USING EXTENDED 2D CVBEM BASIS FUNCTIONS IN APPROXIMATING

3D POTENTIAL FUNCTIONS ON A SPHERE
The extended 2D CVBEM basis functions can be written in a more general form as

¢;zﬁ = [r}(cosef In7, — 8, sin Bj)]aﬁ

o (11)
qf;."ﬂ = [r}.(sinf?j Inr, +8, cosBj)]

where the superscript ofd refers to any of the (x,y), (x,2), or (v,2) 2D planar coordinates. That is ¢fy,
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and l,l/j-‘y refer to CVBEM basis functions defined with respect to the jth CVBEM nodal point that is

located exterior of the 2D projection, Qxy of the 3D problem domain, , onto the (x,y) plane. Thus,
for ny, ny, and n3, CVBEM nodes are defined appropriately, i.e. exterior or on the 2D projected
surfaces I'yy, I'xz, and I'yz, respectively, in each of the (x,y), (x,2), and (y,z) 2D planes, respectively,
the 3D CVBEM approximation function is given by

y

O(x.y,2) = (a7 + b7y )
i=l

a2)

iy

£ (arr +bryr)+ Y (arer +brvY)
=l

i=1

where af’ﬂ and bJ'?"ﬂ are constants to be determined by the Gramm-Schmidt process described previ-
ously. It is noted that, for simplicity, a 3D approximator can be readily developed in terms of only
using the ¢;‘ﬁ or the w;.‘ﬁ functions, rather than both forms of basis functions. It is also noted that,

from expression {12),

L(tf?(x,y,z)) =0 in Q (13)

and the usnal least squares residual norm “&ﬁ(x A z) - ¢, " is minimized on I by the Gramm-Schmidt

procedure.

6 APPLICATION
To implement the CVBEM method, the n nodes (n = n; + 1 + n3 from Eq. 12) and their associated
branch cuts must be defined. A branch cut is a ray which emanates from a pode and does not intersect
the 2D boundary except at the node itself. There is only one branch cut assigned to each node, from
which all angles ® will be measured for that node.

To simplify the process, all CVBEM nodes are chosen at equally spaced intervals with the pattern
of node points identical on each side of I. The branch cuts are selected to be at outward normal
angles (i.e. orthogonal to the problem boundary). Note that CVBEM nodes do not need to lie on the
problem boundary projections.

Integration points, used for the numerical integration of equation (2), must also be chosen on the
boundary of the sphere, I'. However, no integration
point should coincide with a node used with the r
CVBEM approximator and if q represents the
number of integration points chosen, then g=n.

Let C be the gxn matrix whose columns are the
basis functions evaluated at all of the integration
points. Figure 1 illustrates the quantities involved
in the evaluation of a CVBEM basis function at an
integration point.

The function f to be approximated on the sphere
is defined discretely at the integration points on T,
resulting in a gx1 column vector E. The system

Cy= E (14) Figure 1: Branch Cut Parameters

Branch Cut
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240 Integration Points on North Hemisphere 4B0 Test Points on North Hemisphere
Figure 2: Location of CVBEM integration points Figure 3: Location of test points ont northern
on northern hemisphere, hemisphere.

can be solved to obtain a least squares solution so that the errot, e, given by
e=||E-Cy, (15)

is a minimuin, i.e. the residual in matching boundary conditions is minimized.

For modeling purposes, the 3D sphere is discretized into latitudes and longitudes such that there
are 240 integration points located in both the north and the south hemisphere, double counting the
equator points. Another set of “test” points are also located on the sphere in order to evaluate the
approximation results in between integration points. In our case, 480 test points are used in both
hemispheres. Figures 2 to 3 depict these two schemes as viewed from above the north pole of the
sphere. (A similar arrangement occurs in the south hemisphere.) In order to avoid coincident
projections of integration points on any of the 2D planes, both of the two hemispheres are “twisted”

()} homnc

Norih Hemisphere Approximation of South Hemisphere Appmxin}nlien of
F(x,y,z) = 100 on East Hemisphere F(x,v,z) = 100 on East Hen_usphcrc
F(x,y,z) = 0 on West Hemisphere F(x.y,Z) = 0 on West Hemisphere
Without Rolation Without Ratalion

Figure 4: North and South hemisphere approximations without rotation.
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North Hemisphere Approximation of South Hemisphere Approximation of
F(x.y,z) = 100 on East Hemisphere F(x,y,z) = 100 on East Hemisphere
F(x,y,z) = 0 on West Hemisphere F(x,y,2) = 0 on West Hemisphere
With Rotation 1 With Ratation 1

Figure 3: North and South hemisphere approximations with rotation L

one degree, in opposite directions, so that all points are “seen” in each of the three 2D projections.
Other angles could be used for this “twist”. What is important is to reduce the number of coincident
integration points that are lost due to the projection process. This “twist” technique is only needed
if one uses the same number of nodes as the number of integration points, resulting in a collocation
technique. Because the maximum approximation error must occur on the problem boundary, evalu-
ation of the boundary fit is all that is normally needed in order to evaluate the accuracy of the
approximation function.

The CVBEM basis function set can be increased by rotating the problem domain, Q, with respect
to the original three 2D CVBEM projection planes, and resolving the problem but using the error of
matching the original boundary conditions (BCs) as the new BCs for the rotated problem. After
solving for the rotated domain problem, the second CVBEM approximation is rotated backwards to
the original orientation and then added to the original CVBEM approximation, resulting in an im-
proved CVBEM approximation. The improved approximation can be further increased in accuracy
by repeating the above steps but using different rotation settings, including rotations in each of the
three axes. Indeed, one need only use a single nodal point in the first CVBEM approximation and
then use several non-coincident rotations of the problem domain to improve modeling results analo-
gous to using several nodes in a CVBEM approximation. Another approach is to assemble all of the
CVBEM basis functions, generated by the rotation technique and then solve for the best approxima-
tion with respect to the entire basis function set simultaneously.

6.1 Application: Dirichlet Problem on a sphere - 100° C temperature on East Hemisphere, 0° C
on West Hemisphere

Given the sphere geometry and integration and test point setup shown in Figures 2 and 3, a Dirichlet
steady-state heat transport problem is examined where a temperature of 100° C occurs on the East
Hemisphere, and linearly decreases to 0° C a short distance (between integration points) into the
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North Hemisphere Apprnxin?ation of South Hemisphere Approximation of
F(x.y,z) = 100 on East Hemisphere F(x,y,z) = 100 on East Hemisphere
F(x,y,z) = 0 on West Hemisphere F(x,y,2) = 0 on West Hemisphere
With Rotation I With Retalion I

Figure 6: North and South hemisphere approximations with rotations I and I1.

Sonth Hemisphere Approximation of
Fi{x,y,z) = 100 on East Hemisphere
F(x,y,z} = 0 on West Hemisphere
With Rotations I, l and 111

North Hemisphere Approximation of
F(x,y,2) = 100 on East Hemisphere
F(x,y,z) = 0 on West Hemisphere
With Rotatiens I, H and 1T

Figure 7: North and South hemisphere approximations with rotations I, II and III.
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South Hemisphere Approximation of

North Hemisphere Approximation of R .
. x,¥,z) = 100 on East Hemisphere
F(x,y;z) = 100 on East Hﬂ?“p here F(x,y,z) = 0 on West Hemisphere
F(x,y,z) = 0 on West Hemisphere With Rotations I, 11, 18f and IV

With Retations 1, IL, IIE and IV

Figure 8: North and South hemisphere approximations with rotations I, 11, I1T and IV,

West Hemisphere, and is 0° C in the remainder of the West Hemisphere. Using these initial bound-
ary conditions, a CVBEM 3D model was setup, with resulting approximation of temperature
isocontours as shown in Figure 4. These isocontours are developed by use of approximations deter-
mined from equations (4) to (6). The next step was to compute the residual error in matching the
BC values, at the integration points, and use this error as a new set of BC’s. But first, the domain is
rotated (rotation 1) 15-degrees (using the new BC values). In the rotated geometry, the 3D CVBEM
mode} was reapplied. The resulting approximations, of the residual error in fitting the original
BC’s, were rotated backwards to the original position, and then summed with the originat 3D CVBEM
approximation results to arrive at an improved approximation. Isocontours from this second effort
are shown in Figure 5. Continuing this approach, approximations of successive residual errors for
a 30-degree (rotation 2) and 45-degree rotation (rotation 3) were obtained and summed (see Figures
6 and 7, respectively). Finaltly an approximation of residual error (remaining after all of the above
three rotation enhancement efforts) using a 45-degree rotation (rotation 4), in another axis of rota-
tion, was obtained and summed to the results shown in Figure 7 (see Figure 8). As is seen from the
application results, using rotations t0 improve approximation accuracy is analogous to adding nodal
points assuming rotations do not result in identical locations of nodal points.

7 CONCLUSIONS
In this paper, the two-dimensional (2D) CVBEM is extended to solving potential problems on a
three dimensional sphere. This is achieved by applying the CVBEM to three coupled projections of
the 3D problem domain, in 2D orthogonal planes, and then superimposing the resulting correspond-
ing 2D CVBEM solutions. By rotating the problem domain and resolving the problem, but using
the error in matching boundary conditions as the rotated problem boundary conditions, an improve-
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ment in the results obtained is achieved. Using a sequence of such rotation solutions reduces the
approximation error analogous to adding sets of nodal points to the original problem setup. The
extension of the above formulations to other 3D geometries follows directly from the work pre-
sented in this paper.
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