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ESTIMATING CHANGE IN
SEDIMENT TRANSPORT TRENDS
DUE TO CATCHMENT CHANGES

T.V. Hromadka II! and T.]. Durbin?

Abstract

Anticipation and mitigation of changes in sediment transport trends, such as
due to urbanization of a catchment and resulting changes in runoff flow trends, is
an important factor in nonstructural solutions in floodplain management because
changes in sediment transport can result in changes in the flood carrying capacity of
a watercourse. Almost all sediment transport relationships found in the literature
equate sediment load, in a flow of storm runoff, to flow rate, by use of the well-
known power law mathematical model involving two parameters; namely, a
coefficient and an exponent. Some equations relate sediment load to flow velocity
by use of the power law equation. Other equations relate sediment load to flow rate,
or a flow rate in excess of a threshold flow rate. For most conditions, where changes
in erosion or deposition is primarily due to changes in flowrate (such as due to
urbanization and/or diversion effects), the changes in sediment transport trends can
be readily related to the changes in catchment runoff trends (or flow rate trends) by
examining the cumulative changes in the ratio of each storm's sediment transport
load for a time history of storm events.

Using this approach, the sediment transport parameter needs, for a soil
species, are reduced to a single parameter, the exponent, greatly simplifying the
uncertainty in sediment transport estimates. By equating the computed cumulative
change in sediment transport to the observed effects in the watercourse (ie.,
observed or computed total erosion or deposition), the proportion of the observed
effects caused by the particular changes in the catchment can be estimated.
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INTRODUCTION

Almost all sediment transport relationships found in the literature equate
sediment load, in a flow of storm runoff, to flow rate, by use of the well-known
power law mathematical model involving two parameters; namely, a coefficient
and an exponent. The literature contains numerous references that list sets of load
estimation equations, all of which are formulated in terms of a power law
relationship (see references). Some equations relate sediment load to flow velocity
or flow rate by use of the power law equation. Other equations relate sediment load
to flow velocity or flow rate in excess of threshold values. For most conditions,
where changes in erosion or deposition is primarily due to changes in flowrate
(such as due to urbanization and/or diversion effects), the changes in sediment
transport trends can be readily related to the changes in catchment runoff trends (or
flow rate trends) by examining the cumulative changes in the ratio of each storm's
sediment transport load for a time history of storm events.

Using this approach, the sediment transport parameter needs, for a soil
species, are reduced to a single parameter, the exponent, greatly simplifying the
uncertainty in sediment transport estimates. By equating the computed cumulative
change in sediment transport to the observed effects in the watercourse (i.e,
observed or computed total erosion or deposition), the proportion of the observed
effects caused by a set or sequence of changes in the catchment can be estimated.

Sediment Transport Relationships

Sediment transport, at a fixed point along a watercourse, can be modeled by a
power law equation that relates sediment load (e.g., mass of sediment per unit flow
rate) to flow rate or flow velocity, of the form
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where L is the sediment load; the o; and B; parameters are held fixed for a particular
soil species; Q is flow rate; V is the flow velocity; and Qt and V; are a threshold flow
rate and flow velocity, respectively, such that load is zero unless the threshold value
is exceeded. Numerous researchers and authors (see reference list) have developed
equations to predict values for the above o and B;, resulting in dozens of parameter
predictor equations, but the use of the well-known power law, as in Eq. (1), is
common to all of these load equations. In general, B values lie in the range of

between 1 and 5, with values frequently falling between 2 and 3.

In general, for a fixed point along the watercourse and for a particular range of
flow rates, a logarithmic stage-discharge relationship can be developed that can be
used to transform Eqs. (1b) and (1d) into the form of Eqgs. (1a) and (Ic), respectively.
Therefore, only Eqgs. (1a) and (1c) will be carried forward in this paper. The use of
Egs. (1a) and (1c¢) is widespread among practitioners and has found use in numerous
standard computer programs and governmental agency policy guidelines (e.g., Los
Angeles County Hydrology and Sedimentation Manual, p. 3.10, 1991).

Catchment Runoff Trend Changes

The effects of catchment urbanization include increased impervious areas,
changes in stream flow velocities, and diversions, among other factors. These
alterations generally change flow rates for a given storm, and also change the
sediment delivery to the watercourse such as in a reduction in wash load due to the
development of land sediment wash load sources.

At a particular point along a watercourse, the parameters used in Eqs. (1a) or
(1c) generally remain the same for both the pre- and post-development conditions,
for a subject species of soil particles unless there exist significant differences in
channel soil properties with depth. Consequently, the sediment load for both
conditions remains predicted by Egs. (1a) or (1c) under the mild conditions that, for
example, erosion (at the subject point) is not limited by sediment supply at that
point (in which case a factor may be multiplied to the power law to represent a
reduced sediment load) and that sediment supply, such as from wash load, does not
alter the load equation parameters (for example, if wash load is reduced, the subject
point may be subject to even more erosion than as represented by only considering
an increase in flow rates in the equations).



Change in Sediment Transport Load for a Single Event

From the above discussions, a single storm event, can be modeled as a set of

unit period flows, over time, such as estimated by a runoff hydrograph procedure,
denoted as gj, i=1,2,...,n, where n is the number of unit periods. Then, for q% and q}

being the unit period i flow rate for conditions 2 and 1, respectively, of the
catchment
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where L? and L! are the load estimates from Eq. (1a). A similar equation results

from using Eq. (1¢) in Eq. (2).
For the total storm event, k, composed of ny intervals of unit flow rates,
n
2 k (q2\B
(L—l] =) (q—;) ' At 3)
LY 3 \q/

where L2 and L1 are the total loads for the subject single storm event; At is the unit
period duration; and the considerations of sediment supply are as discussed
previously.

Change in Sediment Transport Load for a Storm History

For m storm events in a storm history, the total ratio of sediment load, for the
load estimator of Eq. (1a), is given by
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where L} is the total sediment load involved over the storm history, for condition 1,
and Eq. (3) applies for each storm event, k. Note that in Eq. (4), a B1 = 1 results in the
ratio 12/L1 being the ratio of total storm runoff, over the storm history, between the
two catchment conditions. It is also noted that a catchment history of changing
conditions can be considered in Eq. (4) by simply using the appropriate runoff
values. A similar equation, to Eq. (4), results in the use of Eq. (1¢).



Estimating the Proportion of the Change in Sediment Transport caused by a
Particular Change in Catchment Conditions

Equation (4) can be used to estimate the proportion of, for example, observed
erosion at a particular location, caused by a change in the catchment (that primarily
only causes a change in runoff trends, i.e,, the change in runoff trends is the primary
factor that explains the change in sediment transport trends).

For example, if the erosion observed at a particular site is depth Dy, occurring
over T, years, and for the total storm history of T, years Eq. (4) results in
L
H =T (5)
t
where, for example, condition 1 represents natural unurbanized conditions and
condition 2 is the evolving urbanization occurring over the T, years, then an
estimate of the proportion, P, of observed erosion D,, caused by the changing
catchment conditions is

0 ; r<1 (e, little change in erosion trends is estimated)
P

I
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For example, if r = 3 in Eq. (5), then P = 2.0, or an increase in erosion rate of 200%,
over condition 1, is estimated, and hence about 2/3 of the observed erosion is
estimated to have been caused by changing catchment conditions, by use of the
above equations and assumptions. Naturally, other factors enter into the above
analysis, such as a change in threshold flow rate or flow velocity values, and
changes in sediment supply. For example, if wash load is decreased by urbanization,
then sediment supply is reduced, and Eq. (6) underestimates the impact of
urbanization in increased erosion.



CONCLUSIONS

Anticipation and mitigation of changes in sediment transport trends, such as
due to urbanization of a catchment and resulting changes in runoff flow trends, is
an important problem in the analysis of the environmental effects of urbanization.
Almost all sediment transport relationships found in the literature equate sediment
load, in a flow of storm runoff, to flow rate, by use of the well-known power law
mathematical model involving two parameters; namely, a coefficient and an
exponent. Some equations relate sediment load to flow velocity by use of the power
law equation. For most conditions, where changes in erosion or deposition is
primarily due to changes in flowrate (such as due to urbanization and/or diversion
effects), the changes in sediment transport trends can be readily related to the
changes in catchment runoff trends (or flow rate trends) by examining the
cumulative changes in the ratio of each storm's sediment transport load for a time
history of storm events.

Using this approach the sediment transport parameter needs, for a soil
species, are reduced to a single parameter, the exponent, greatly simplifying the
uncertainty in sediment transport estimates. By equating the computed cumulative
change in sediment transport to the observed effects in the watercourse (i.e.,
observed or computed total erosion or deposition), the proportion of the observed
effects caused by the changes in the catchment can be estimated. In this paper, an
easy to use equation is developed that can be applied in estimating the effects of
urbanization in cases of observed increases in erosion, or in predicting future
increases in erosion, for mild assumptions regarding sediment supply and channel
soil homogeneity.
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SEDIMENTATION ENGINEERING
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Figure 1.
Rio Grande, near Bernalillo, New Mexico (Nordin 1964).
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Niobrara River near Cody, Nebraska obtained from observations
and calculations by several formulas (Vanoni 1977).



SEDIMENT TRANSPORTATION MECHANICS

Colorado River at Taylor's Ferry obtained from observations
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SEDIMENT TRANSPORTATION MECHANICS
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SEDIMENT TRANSPORTATION MECHANICS
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Rio Grande, near Bernalillo, New Mexico (Vanoni 1957).



Sediment discharge, in pounds per minute

SEDIMENT TRANSPORTATION MECHANICS
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