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In the current research, the primary focus is to extend the CVBEM 1o solving potential problems in three
dimensions (3D). This is achieved by applying the CVBEM to three coupled projections of the 3D problem
domain, in 2D planes, and then superimposing the resulting corresponding 2D CVBEM solutions. The new
3D CVBEM technique is also applied towards improving 3D problem approximations, which are based on
the usual 3D boundary element method (BEM) techniques, by approximating the 3D BEM residual error.
Finally, a technique to extend a 3D problem geometry into higher geometric dimensions is introduced, and a
corresponding numeric error reduction technique is advanced for use in superimposing multiple dimension
approximations to improve 3D approximations. © 2000 John Wiley & Sens, Inc, Numer Methods Partial Differential
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I. INTRODUCTION

The complex variable boundary element method (CVBEM) is a numeric technique for use in
solving, in an approximation sense, two-dimensional (2D) potential problems or 2D Poisson
probiems. The considerations of multiply connected regions (i.e., problem domains that contain
holes) and various types of boundary conditions (e.g., flux type or Dirichlet type} have been
examined in detail in various publications, including the recent book of Hromadka and Whitley
[ 1]. Applications of the CVBEM to a wide variety of practical problems is also reported in the
literature (see cited reference). Ever since the introduction of the CVBEM (2], the CVBEM has
been limited to solving potential problems in 2D.

In the current research, the primary focus is to extend the CVBEM to solving potential problems
in three dimensions (3D). This is achieved by applying the CVBEM to three coupled projections of
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the 3D problem domatin, in 2D planes, and then superimposing the resulting 2D CVBEM solutions.
The new 3D CVBEM technique is aise applied towards improving 3D problem approximations,
which are based on the usual 3D boundary element method (BEM) techniques (e.g., [3]), by
approximating the 3D BEM residual error. Finally, a technigue to extend a 3D problem geometry
into higher geometric dimensions is introduced, and a corresponding numeric error reduction
technique is advanced, for use in superimposing multiple dimension approximations to improve
3D approximations.

il. MATHEMATICAL FORMULATION OF PROBLEM

The three-dimensional (3D) potential problem setting considered is to solve the PDE

By B¢ ¢ i
@+3—§!2+@:01n9 (1)

with Dirichlet boundary conditions ¢ = ¢ on I', where € is the 3D domain with boundary
I'; ¢ 1s the 3D potential function; and z, y, » are the usual cartesian coordinates. For development
purposes. £ is assumed to be simply connected (no holes interior of £2).

. GRAMM-SCHMIDT APPROXIMATION SETTING (HILBERT SPACE)

The approximation technique being considered is to define a particular set of basis functions,
and then to determine the best approximation in a least squares error minimization sense (i.e.,
a Hilbert space setting; see {4]). In this case, the best approximation is determined by the usual
Gramm-—Schmidt process, with respect to the assembled set of basis functions in matching the
value of the boundary conditions, ¢, on I' (again, see above-cited reference),

A. Gramm-Schmidt Integration Process

The Gramm-Schmidt integration process involves the nse of integrals of the form, known as an
inner-product, ( f, g}, given by

mmﬁmw, @

where f and g are integrable on . In general, (2) is solved numerically, and the approach used
herein is as follows:

Step 1. Define a set of “‘integration points,” {p; }. of uniform density, on the problem boundary
. Number the integration points from 1 to N 1. (The uniform density of the {p;} on T
can be relaxed, if the integral of (2) is extended to include a weighting function.)

Step 2. Develop aGEOMETRY vector, of dimension &V /, composed of the coordinates of p,, ¢ =
1,2,....NL

Step 3. For any function used in (2), say f, develop a vector F, of dimension N7, composed of
the values F = {f(p;);i = 1,2, - NI} (that is, develop a column or row vector).
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Step 4. To approximate (2}, use the vector dot product

NI
(f.9) = (F.G) =Y fpi)glp:i) AL, (3)
i=1
where AT is the measure of the incremental boundary associated to p,. Note that as
NI -+ oo and A’ = 0, that (F,G) — (f,g). Also, the requirement that the set of
integration points be uniformly distributed on I' can be readily relaxed by defining AT,
in (3}, as a function of the p;.

B. Gramm-Schmidt Orthonormalization Process

Given a set of m linearly independent basis functions (i.e., basis dimension, m), noted as {fid=
1,2,...,m}, orthonormalization is achieved by using the Gramm-Schmidt process, except now
we are in a vector representation of the set { f; 1, noted as { F} }, and we use the vector dot product
given in (3). The resulting orthonormalized vectors are {H,: 7 =1,2,...,m}.

C. Determining the Best Approximation to ¢, on I"

To approximate ¢, on I', another vector, ¢ g, of dimension, N1, is developed as ¢ g = {dp(p;);i =
1,2,..., NI}. The best approximation of ¢y, on T, noted as ¢+, is given by

e

T = Z (HwﬁDB)HJ’- ()

=1

By back-substitution, ¢* can be rewritten in terms of the original vectors, F;, giving
™y
¢" = oF;, (5)
=1

where the o are the coefficients determined from the usual Gramm-Schmidt back-substitation
process from the {H}, ¢g) values [4]. Note that as NI — oo and A" — 0, the ov; — [3;, where
{35 is the Gramm~-Schmidt coefficient corresponding to the original basis function, f;, and in the
original space spanned by the {f;},

=Y 6,15 (6)
F=1

D. Generalization to Other Spatial Dimensions

The above procedures are applicable to any spatial dimension. In our setting, the focus of the
approximation is to match the boundary values, ¢, on I', and, hence, we minimized the norm
|¢* — ¢ || on I', where || || is the usual least squares norm value. But {2 and I can be extended to any
higher geometric dimension, the only difference in the above development being the expression
of the GEOMETRY vector coordinates, p;, in the appropriate geometric dimension.

IV. APPROXIMATING 3D POTENTIAL FUNCTIONS USING 3D BASIS FUNCTIONS

In the previous section, the focus of the Gramm—Schmidt procedure was to minimize ||¢™ — ¢yl
on ['. No attention was paid to how ¢ relates to the interior of €2, In this section, the choice of
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basis functions is addressed such that ¢* exactly solves the PDE operator equation, L(-)
where L is given by

0,

&) | 8P 970
L= gz +37 5z "

and where (-) is a function that is twice differentiable with respect to x, 3, and z as used in (7).

A. 3D Basis Functions of the Form, 1/R

In 3D, the Green’s function 1/R; is a potential function, where R? ={x—x;)*+(y~y;)* +
(z - z;)? and z; = (z,,y;,2;) is an arbitrary point in space or “node,” and £, > 0. Thus, for
N3.D nodes, defined exterior of 2 U T, an approximation function of ¢(z, y, 2}, as used in (1), is
given by r/A) 4, where

N3D

$a= > a;/R,, (8)

=1

where the a; are coefficients. The choice of the @, is determined by minimizing the norm:

léa — ¢ullon T, (9)

arriving at the best approximation, noted as gﬁf‘q. Note that we now have (f)*A approximates gy, on
Iand Lg% =0in (.

V. APPROXIMATING 3D POTENTIAL FUNCTIONS USING LOWER DIMENSION
BASIS FUNCTIONS

A. 1D Geometry Basis Functions

Other types of basis functions can be used other than the form used in (8), including functions
that are developed in other geometry dimensions, but yet satisfy (1).

For example, in a one-dimension geometry, or 1D, extended for each of the 3 axes used in a
3D geomelry, consider the set of functions {1, z, y. z}. These functions all satisfy (1) and can be
used to increase the basis dimension, m, in developing a ¢*.

In & two-dimension geometry, or 2D, consider 2D polynomials generated from the real or
imaginary parts of complex variable polynomials 27, where z = z + iy, ¢ = /= 1. (There should
be no confusion over the notation z being the complex variable vs. z being the third-dimensional
coordinate.)

B. 2D Geometry Pelynomial Basis Functions

For example, the complex function z? includes the 2D real functions, in the (i, y) 2D geometry
plane of (z* — 3*) and (zy). Note that analogous 2D functions can be developed in the (z, z)
and (y, ) 2D planes as well, which for the equivalent second-degree complex polynomial results
in the functions {(z* — y?), zy, {2 — 22), z2, {(1* — 2%), y2}. All these functions are generated
in a 2D geometry sense, yet can be extended into the 3D geometry, and satisfy (1). (It is noted
that the six functions listed above are not all linearly independent and do not all survive the
orthonermalization process.) By increasing the degree of the complex polynomial in each of the
three 2D planes, an arbitrarily large basis can be developed for use in (6). (It is noted that the 1D
geometry extended basis functions, stated in the above, are elements of the 2D geometry extended
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polynomial basis functions. It is also noted that these particular basis functions do not involve the
use of nodal points.)

C. 2D Geometry CVBEM Basis Functions

Many other types of 2D geometry basis functions are also available. In this section, the complex
variable boundary element method (CVBEM) is utilized to generate 2D geometry basis functions
to be extended into the 3D geometry.

Unlike the 2D polynomial basis functions, but similar 1o the 1 / R; 3D form of basis functions,
the CVBEM requires the use of nodal points. Details regarding the CVBEM can be found in
numerous articles and books, including [1]; consequently, these details are not repeated here. For
our purposes, it is sufficient to state the form of the CVBEM basis functions (for the case of
a linear global trial function used in the CVBEM). Section VIIL.C contains further information
regarding the CVBEM.

The CVBEM involves the sum of products of complex coefficients multiplied by analytic
functions of the form,

N
@z} = Cilz ~ zj)Lng(z — zy), (10)
i=1

where w(z) is the CVBEM approximation in the {x, y) plane; N is the number of CVBEM basis
functions; C; are complex constants; z; is &; +4y;, the (x, ) plane coordinate of node 7; and Ln;
is the complex natural logarithm with branch cut oriented to lie exterior of £ and not intersecting
with other such branch cuts emanating from other CYBEM nodes. (Again note that 2 is notation
for the third coordinate in a 3D geometry, and also denotes the complex variable.) From Euler’s
formula,

-z = ?'jewf, an

where r; is the 2D radial distance from z to z;, and §; is the radial angle measured counterclockwise
from the branch cut defined at CVBEM node 7. From (10) and (11), the associated 2D CVBEM
basis functions are of the form

a;r;(cosd;Inr; - 8;sind; )}
or
byri(sin@;Inr; 4+ 8; cosb;), (12)

where the a; and b, are real constants.

By simply rewriting the complex variable in terms of the other spatial cocrdinates using x + iz
o y + iz, the CVBEM basis functions, (12), are readily extended into the other 2D (z, z) and
(#, z) planes, resulting in another set of extended 2D basis functions for use in the 3D problem
setting of (7) and (9), to be applied analogous to the extended 2D complex polynomial formulation
described previousty.

The CVBEM formulation involves the use of three sets of 2D plane nodal points, one set of
nodes being defined for each of the three 2D planes. The approach used is described as follows:

Step 1. Define the 3D problem domain to have geometry coordinates all greater than zero (i.e.,
if necessary, simply translate the 3D Q U T).

Step 2. Project the 3D Q U T onto the (z, y) 2D plane. The 2D projected domain is denoted by
€, with boundary T's,,. Similarly, project 2 U T onto the 2D (x, ) and (y, z) planes,
resulting in §2,, and I',.., and £2,,, and I',,, respectively.
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Step 3. Define CVBEM nodes in the (z,y) 2D plane, all located exterior of {1, (but arbitrarily
close or on I, ). Similarly, define other CVBEM node sets corresponding to ', and
I'y.. respectively.

Step 4. Develop CVBEM basis functions, of the form of (12), with respect to each node, cor-
responding to the I'zy, ., and Ty, surfaces, in the {z,y), (x, z), and (y, z) planes,
respectively.

Upon completion of the above steps, a set of extended 2D CVBEM basis functions result that
satisfy (1) and bave potential function components in all three geometry dimensions of the 3D
QU I That is, analogous to the above complex pelynomial extension into 3D, the CVBEM is
now extended into 3D. The applications section provides further details on the implementation
of this procedure.

VI. USING EXTENDED 2D CVBEM BASIS FUNCTIONS IN APPROXIMATING 3D
POTENTIAL FUNCTIONS

Two technigues for using the extended 2D CVBEM basis functions are as follows.

A. Technique 1: 3D PDE Soiver

The extended 2D CVBEM basis functions can be written in a more generalized form as

97" = [ry{cos 031 r; — 0, sin@)]| "

¥ = [rj(sind; Inr; + 6, cos 6;)]*°, 9

where superscripts a3 refer to any of the (z,y), (z, 2), or (y, z) 2D planar coordinates. That is,
;¥ and 1" refer to CVBEM basis functions defined with respect to the 5 CVBEM nodal point
that 1s located exterior of the 2D projection, (2, of the 3D problem domain, §2, onto the {x,y)
plane. Thus, for ny, ny. and ng CVBEM nodes defined appropriately (i.e., exterior or on the 2D
projected surfaces I'y, T'x.. and Ty, respectively) in each of the (z,y), (z, 2), and (y, z) 2D
planes, respectively, the 3D CVBEM approximation function is given by

N

Qﬁ(l‘, Y, Z) - Z (a;:y¢);::‘1‘ -+ b;‘f,w;y}

5=1
Tz fhy

O (AR bR 4 Y (a4 b, (14)
J=1 j=1

where the a;‘ﬁ and b;"ﬁ are constants to be determined by the Gramm-Schmidt process described
previously. It is noted that for simplicity, a 3D approximator can be readily developed in terms
of only using the q5;-’ﬂ or the @if;”ﬁ functions, rather than both forms of basis functions. It is also
noted that, from (14),

Lig{x,y,2)} = 0in 2 (15)

and ||¢3(:1:, Y, 2} — ¢ 1s minimized on ' by the Gramm-Schmidt procedure. An application of
Technique | is provided in Section VIIIL.
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B. Technique 2: 3D Numerical Error Reduction

Technique 2 involves the concept of coupling both the more standard 3D approximation tech-
niques, such as use of (8), with the extended 2D approximation techniques introduced in the
above, such as the use of (14). The following steps are used:

Step 1. Solve (1) using the 3D solver, such as (8), and develop the best approximation for this
step, denoted as ¢7 . Hereafter this is called the e approximation *“baseline” solution,
because a dimension k solver is being used to approximate an order & PDE.

Step 2. Using ¢%, develop the boundary condition error of

€4 =1¢p—~ ¢, onl. (16)

Step 3. Using the extended CVBEM technique, in 3D, solve the PDE of (1), but instead of using
¢y as the problem boundary conditions defined on T, use e 4, of (16), as the boundary
conditions, and develop the best approximation for this step, denoted as ¢%.

Step 4. Couple the results of the above steps by adding ¢% and ¢},

& = ¢+ ¢h. (7

Then L{¢*) = 0in £, and |[¢* - ¢;]| is further reduced in value.

An application of Technique 2 is provided in Section VIIL

It is noted that the above steps could be applied on an individual {x, y), (y, z), and (x, z) 2D
planar basis, one at a time, rather than in combination, in order to further increase the 3D solver
basis function dimension without increasing computational effort in solving matrix systems.

VH. APPROXIMATING 3D POTENTIAL FUNCTIONS USING HIGHER DIMENSION
BASIS FUNCTIONS

A. Approximating 2D Potential Functions Using 3D Basis Functions
Consider a 2D Potential problem,

¢ %o

— + == =0} 18

022 T o ! (8
with ¢ = ¢ on the boundary of £2, denoted by I, where now €2 U T is a 2D geometry. Assume
that {} is simply connected and [ is a simple closed contour. A method to approximately solve
(18) is to extend the 2D problem domain and boundary into 3D, redefine boundary conditions on
the extended 3D domain, and solve a 3D PDE system analogous to the 2D PDE, equivalent to
(1), given by

Oz? ay? 6;:5 in SZ,’ (]9)

where € is the 3D domain developed from extending the 2D domain. To arrive at €, and its
associated boundary (in the 3D geometry), I, the following steps are undertaken:
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Step 1. Define integration points (see Section I11.A) on the 2D boundary, I, and also define
integration points in the interior of the 2D domain, Q2. Note that @ U T lies in the (z, y)
plane.

Step 2. The new dimension to be attached, namely the z coordinate, is now coupled to each
integration point, defined in above Step 1, in the positive orthogonal direction. Let z = 0
at each integration point defined in the original 2 U T domain, resulting in the 3D
coordinate (z;, 1, 0} for each such integration point.

Step 3. Extend rays, from each integration point of Step 1, into the third dimension, in the
positive direction, from z = 0 to z = L, where L is the desired length of 3D “tube”
being extended from the original 2D domain. Note that rays extend into the positive third
dimension from integration points located on the original boundary and in the interior
of the 2D 2 UT'. Also note that, algorithmically, all that is required to attach the new
dimension is to simply add another coordinate dimension.

Step 4. Define new integration points, perhaps at an equal increment spacing, say Az, along each
ray, from Step 3, until z = L. At each spacing location, a new set of integration points
now exist that are geometricalty identical in pattern to the original set of integration
points, now corresponding to z = (.

We now have a 3D “tube” in (z,y, #) such that each 2D slice in (x, y), where each slice is
taken orthogonal to the 3rd dimension axis, results in identical 2D shapes and integration point
spacing. Note that the 2I) interior, 2, becomes a boundary surface of the 3D extension, I, Also
note that at z = L, the boundary surface appears identical in geometry to the boundary surface at
% = 0; that is, the 2D boundaries of the 3D tube ends are identical to any 2D slice of the tube, We
say that the set of integration points that lie on a particular ray are part of a “string.” Note that
the number of strings equals the sum of the number of integration points defined on the original
2D T and the number of integration points defined in the interior of the 2D .

We now have arrived at a 3D geometric extension of the 2D problem domain. We can approx-
imately solve the 3D PDE system of (19) with boundary conditions defined as follows:

Step 1. For each string attached to the original T', define ¢y (27, y5, 2;) = ¢o(2;, s, 0).
That is, the value of ¢, is a known constant on each string attached to T

Step 2. For each string originating from the interior of (2, satisty #¢/8z = 0 by requiring ¢ to be
constant along each string. Note that for such “interior” strings, the constant needed is
solved as part of the numerical solution (which, of course, is the goal of the original 2D
Potential problem). This provides for a *“zero flux™ along the newly attached orthogonal
geometry dimension,

Given the 3D domain and boundary as extended from the 2D domain and boundary, and given
the extended PDE system and corresponding boundary conditions (of which the interior strings
can be used or, as an alternative, simply set ¢{x;,y;,0) = ¢(x;,y;, L) for integration points
interior of £2), we can now solve the new 3D problem, using Technique 2 of Section VI.B, that
is equivalent to the original 2D problem. Then, we arrive at the best approximation, in 3D, noted
again as ¢ Solving for ¢, as in Section VLB the best approximation is ¢* = ¢% + &

B. Extending a Dimension kPotenttal Problem Setting Into Dimension (k1 1)

An objective of Section VILA is to introduce the underpinnings of how to apply the geometry
extension concepts, intreduced in Section V, towards using still higher geometric dimensions.
The above methods provide overall generality to other geometric dimensions of basis functions.
To present such a generalization, the extension of a 3D potential problem into a 4D problem
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setting is now examined. The extension into even higher dimensions directly follows from the
procedural steps presented. To better describe the procedures, the 2D PDE problem of Section
VILA is carried forward in its developed 3D problem setting, to be extended into a 4D problem
setting.

Three key steps are involved in extending a k-dimension potential problem into a (k + 1)
dimension setting (where k is a positive integer):

Step 1. Define a PDE sysiem, in dimension (k + 1), equivalent to the PDE system of dimension
k.

Step 2. Develop a dimension (k + 1) geometry “tube,” denoted as %+t U I™**! from the
dimension k problem domain, denoted as Q¥ U T'*.

Step 3. Define dimension (k+ 1) boundary conditions on T*11, equivalent to the original dimen-
sion k boundary conditions, and corresponding to the dimension (k + 1) PDE system.

With respect to Step 1, the Section VILA 2D problem PDE is
ol + Fiads
dx2 - oy?

When extended into 3D, the PDE of (20) becomes the PDE system (see (19)),

= 0, in Q2. (20)

e | & P _

wf 5+ =0 in ° 21
9 _
8z

And when extended into 4D, the PDE system of (21) becomes

2 2 2 2

Tt GEe e =0
¢ _ ol
=0 in £2°, (22)
9 _ g

s

where s is notation for the added fourth dimension geometry coordinate. From (20)—(22), adding
dimensions simply adds terms to the PDE operator L{-), with additional zero gradient conditions
imposed on the new dimensions.

With respect to Step 2, the 3D geometry “tube,” as developed by extending the original 2D
problem domain and boundary into 3D, can now be extended into a 4D “tube” analogous to
the previous geometry extension procedure. Again, a dimension 4 coordinate is attached to all
3D coordinates, resulting in (z;,y;, 25, 0) coordinates for each integration point j used on the
boundary and in the interior for the 3D tube. Note that for the 4th dimension, s = 0 at this stage
of the analysis. Next, rays are extended into the positive 4th dimension, from s = O to s = L.,
emanating from each 3D integration point on I'* and in 23, The integration points that are located
in the interior of Q2 (i.e., the integration points defined along the strings connecting both ends
of the 3D tube, and do not lie on the boundary of the 3D tube, "%} are also extended into 4D,
to become part of I'*, when s = 0 or s = L,, using the same procedure. We now have the 4D
problem boundary, T'4.

By defining new integration points on each 4D string, that emanate from I'®, at increments
As, I is prepared to perform numeric integration operations. If new integration points are also
defined along the strings located in the interior of Q* (i.e., strings emanating from the integra-
tion points located in the interior of £2%), then the interior of Q* is prepared to be extended in
dimension 5.
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Note that the 4D geometry “tube” boundary has end boundaries defined by, simply, the set
of ali integration points with 4D coordinates (z4,%;,2;,0) at one end and the set of all points
with coordinates (x;, y;, 2;, L) at the other end. The 4D strings have coordinates (5,95, 24, 9),
where 0 < s < L,. Integration points are defined in the interior of 4, along strings, using the
same incremental spacing, As, used along I'* strings. Note that any 3D “slice” of the 4D tube,
taken orthogonal to the 4th dimensional axis, s, is identical in geometric shape and distribution of
integration point locations to the 4D tube end boundaries (i.e., the ori ginal 31> shape and distribu-
tion of integration points). By comparison of this exercise to that accomplished in Section VILA,
the geometric extension procedure from dimension % to dimension (k + 1) follows accordingly.

It is seen that the above geometry dimension extension procedure is simply the “stacking” of
dimension % “‘slices,” along the “vertical” (k + 1) dimension direction, where each slice is a
copy of the original Q¥ UT*, offset by a spatial increment in the (k+ 1) dimension. Additionally,
all integration points of each slice are in “vertical” alignment with respect to dimension (k+ 1),
and lie along a straight line in dimension (k + 1), called a dimension (% + 1) string,

With respectto Step 3, all strings used in extending Q* UT* into Q*+1UT*+1 have the property
that ¢ is a constant value (i.e., ¢ is an equipotential) along an individual string, Consequently,
any integration point located on I'*** either has a ¢y, value defined from T, or has a zero flux
boundary condition due to being located at the end boundary of the dimension (k + 1) tube.

C. Dimension (k+ 1) Potential Basis Functions
Given the Q"1 UT*+! with boundary conditions, ¢ ™", and PDE system in dimension (k+ 1), a
dimension (% + 1) approximation function of the form of (8) is used. In dimension (£ + 1), Rj-’"“
is the dimension (% -+ 1) Euclidean norm (analogous to 2D and 3D), measured from node j located
in the (k + 1) dimension space, but exterior of Q*+1 ( ["++7,

Define L*+1(-) by

k41 o2 (.

Ly =3 52 (23)

where 1; is the ' dimension coordinate in the {k + 1) dimension geometry. Then
kbly phaly(k=1) _
L¥HR]T) =0, (24)
and a suitable approximation function is

Niga

o= D" ay/ (R, (25)
=1

where the goal is to minimize, as before [|¢* 1 — 7|\

D. Multiple Dimension Numerijcal Error Reduction

Analogous to Section VI B, the highest dimension solver used forms the approximation baseline
solution. The application of successively smaller dimension approximations, each targeted to
evaluating the residual error remaining in matching boundary conditions, and then adding all
dimension solutions together, forms the total approximation function.

An application of solving a 2D potential problem by coupling 2D, 3D, and 4D approximations
is contained in Section VIII,
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VIll. APPLICATIONS

A. Introduction

In this section, we investigate the effectiveness of approximating a potential function f(x, y, z)
by a generalized Fourier series whose basis functions inctude potentials of the form

1
Vie— )+ (v — w)? + (2 — 2)?

where {P;(x;, y:, 2,) }7, is a predetermined set of points in R called 3D nodes.

Initally, f is approximated by the {;’s discretely in a least-squares sense on the surface of a
cube, a process that emulates solving a normal R boundary-value problem. This is referred to as
the 3D Solver.

The error from the above approximation, in turn, is least-squares approximated using 2D
CVBEM potential basis functions generated in the zy, xz, and ¥z planes.

An advantage of this process is that the basis of the generalized Fourier series is composed of
potential functions of three distinct types; it should prove useful in the approximation of a variety
of different functions.

C,;(ﬂ:,y,z): v=1,...,m, (26)

B. 3D Solver Approximation of a Function

Integration Points. A number of equally spaced points (called inzegration points) are selected
on each face of a cube (called the primary cube). These points are arranged in an nn X n pattern
on each face (Fig. 1), resulting in a total of 6n? integration points. At these integration points the
function f is evaluated to produce the boundary conditions of the problem. These function values
are stored in a 6n% x 1 column vector called F.

3} Nodes. The {; 3D potential basis functions are uniquely defined by the choice of the 313
nodes. The 3D nodes are defined on a larger cube that is centered around the primary cube. These
nodes are arranged in an equally spaced 1 x m pattern on each face. (Note: must have m < nor
the resulting system is underdetermined). The (;’s generated by such nodes are, of course, linearly
independent.

The size of the 3D cube is related to that of the primary cube by the value of gffser (Fig. 2).

A
Z

L] . L] y
LJ - L >

X

FIG. 1. Piacement of integration points.
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FIG. 2. Basis function node placement.

Each ¢, basis function is evaluated at the integration points {in the same order as was done for
the function f) and the results are stored in the columns of a 6n2 x 6m? matrix D (for 31). To
discretely approximate f with a linear combination of the {;’s, solve the system

Dz = F. 27)

In most cases, this system is overdetermined (/n < n). The least-squares solution is found by
orthonermalizing D using the Gramm-Schmidt method. Let Af represent the orthonormalized
D). Then the normal equations are

MY (Mv— F) =10
or
M™Muv=M"F (28)
Since M7 M = I, then the solution in terms of the orthonormal basis (columns) is
v=MTF (29)

The coefficient vector = from the original problem can now be found by solving the upper-
triangular system

MTDp = ». (30)

Hence the vector > = D is the 6n® x 1 column vector that most closely approximates the
vector I in the subspace spanned by the basis function vector representations.

Note that this process of using Gramm-Schmidt and then back-substituting to find « is an
efficient way to solve this least-squares systent.

Error Evaluation. The error evaluation in the continuous case over each 2D face A4 is

e = {/A f - ﬁamp&ox)2051411 i (31)
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To approximate this in the discrete case over the entire cube, the following is used:

Bl

6n?

2
8
e & | [F *%12;
J=1 ]
-4
6n? 2
5 12
= n z [FJ =Py
j=1 ]
S nl
= - ”E}-”Qﬂ (32)
71

where F, and 1, are the 5*" elements of F and v, respectively; £y = F — 9 (a 6n? x | column
vector); and s is the length of one side of the cube,

C. CVBEM Approximation of 3D Sclver Error

The objectives here are to provide a discussion of the general theory of the complex variable
boundary element method (CVBEM), to explain how to discretely solve real-valued boundary
value problems in R? using CVBEM, and to explain how this method can be used to estimate the
error resulting from the 3D Solver in (R?),

Consider a function (2} = a(z) +¢3(z} in the complex plane defined on a simply connected
region €2 bounded by a simple closed curve T', with ¢ analytic on © U T, By Cauchy’s Integral,

olz) = —— fr "DC(C_)‘f. (33)

More simply, Let I be a square boundary, and consider a set of n nodes on I', (Fig. 3).
Let G(z) be a global trial function defined and continuous on I', and composed of a linear
combination of independent nodal basis functions [4]. An approximation to ¢ is
\ 1 G(¢)d¢
Plz) = - cloe

T2 Jp (-2

(34)

4, etc...

® & &
CVBEM nodes: 1 2 3

FIG. 3. CVBEM node placement.
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This integral can be approximated (discreiely) by

Glz) = Z ci(z = zj) In(z - z;), (33)
j=1

th

where z; 1s the 7*" node coordinates. Note that the summand argumernt can be rewritten as

ci(z— 25)Infz — z;) = (a; +ib;)(z — z;) In{z — 2)
= (a; +ib;)(Re")In(Re"’) (where R = R, and § = ¢;)
= {a; +ib;)[[RIn(R) cos & — ROsiné| + i[RIn(R)sin 8 — Rf cosh]].
(36)

Extracting the real part, we obtain an approximation of a(z)

alz) = Z [e;[R1n(R)cosd — RFsind] - b;[R1In(R) sinf — RE cosb]]. (37

J=1

In this presentation, since the two functions of F and & above are closely related, only functions
of the form

g;(R.8) = [RIn{R) cos § — RAsinb] (38)

are considered as basis functions for use in the approximation of the real-valued function a{z).
It should also be noted here that these basis functions are themselves potentials.

To implement the CYBEM method, the n nodes and their associated branch cuts must be
chosen. A branch cut is a ray, which emanates from a node and does not intersect the 2D boundary
except at the node itself. There is only one branch cut assigned to each node, from which all angles
¢ are measured for that node. Branch cuts are necessary to preserve continuity of the g;’s.

To simplify the process, all CVBEM nodes are chosen at equally spaced intervals with the
pattern of node points identical on each side of I'. The branch cuts are selected to be at outward
normal angles to the problem boundary (Fig. 4).

Integration points must also be chosen on . Again, to simplify matters, integration points are
chosen in the same manner as the nodes. No integration point, however, should coincide with
a node (since 1n(0) s not defined). In addition, if g represents the number of integration points
chosen, it is desirable to ensure that g > n.

T~

— Branch Cuts

FIG. 4. Branch cuts for CVBEM nodes.
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Let € {for CVBEM) be the g X » matrix whose columns are the g;'s evaluated at the integration
points. Figure 5 illustrates the quantities involved in the evaluation of a g; at an integration point.

The function f to be approximated can either be given explicitly or defined discretely on the
integration points. If given explicitty, the function must be evaluated at all the integration points,
resulting in a ¢ x 1 column vector E.

If the function is given discretely on the integration points (as it would be in a real-world
problem), £ is already known. For our purposes here, E = Ej, the error column vector £ — 1
from the 3D Solver,

In either case, the system

C, = I (39
can be solved as before to obtain a least-squares solution so that
er = [|Er — Cyll2 (40)
is a minitnum.

CVBEM IN R®. To handle the error from the 3D Solver, the zy, @z, and yz planes are all used
separately as CVBEM 2D platforms. Because the CVBEM basis functions are limited to the
piane, the following convention is used.
Since all integration points in R* are essentially “*stacked” in columns on the surface of the
cube, they can be substituted in the CVBEM by their projection onto the appropriate plane (Fig. 6).
To simplify this process, the same CVBEM node pattern is used in all three planes (zy, zz,
and yz).

D. Linear Approximation of CVBEM Error

For completeness as a final error reducing measure, the error vector

EQ:El“ij (41)

I

b Integration
Point

Branch Cut

FIG. 5. Branch cut parameters.
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CVBEM Node ._——

Projection Points
for CVBEM in
xy plane

FIG. 6. CVBEM node geometry parameters.

from the CVBEM method is least-squares approximated by the linear potential basis {1, x, 1, z}.
Let E5 represent the error vector from this last approximation. Then F4 is the error vector for the
complete process (3D Solver, CVBEM, and Linear method) and the 2-norm error for the entire
process is

es = || Eglla. (42)

It is noted that use of the 10 basis functions provides little help in the overall process due to
the minimization in a Hilbert Space setting.

E. MATLAB Program Features

The entire system presented has been programmed in MATLLAB. Some of the features include
{varies among the three programs presented):
Input:

1. User-defined array sizes for integration points, 3D nodes, and CYBEM nodes.
2. User-defined primary cube size.
3. User-defined 3D Solver cube size.

Quiput:

1. Graphical plots of functions, solvers, and errors.

2. Screen display of pertinent norms and cooperature vectors (optional).

3. Contour potential function, e.g., plots of plane slices through the primary cube (slices
parallel to xy, xz, and yz axis available only).
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F. Two Potential Function Approximations

Two separate potential problems were tackled with the 3D Solver/CVBEM/Linear method pro-
grams. Because of computing limitations, the number of integration points that were used in
analyzing these functions was limited to 100 per side (600 total).

Problem 1. Using a primary cube in R* with side length 5 units, three singularities were placed
at the three points P; (5,0, =2}, P,(0, ~.1,5) and P3(0, 5, 6), by virtue of invoking the poteuntial
function;

filz,y,2) = — 500
Ve =52+ (y—0)2+ (z +2)?
4 10000
V@ =02+ (y+0.1)2 + (z - 5)2
100

YR e e

The first term of f) emulates a cold temperature sink; the second, a very hot source; and the third,
a mild source.

Example 1. The function f; can be seen to be of similar type to the ¢;’s from the 3D Solver.
To use the 3D Solver to its full power, 100 3D nodes per side (600 total) were used in this first
example. 36 CVBEM nodes were used per plane (108 total).

The results of the program run appear in Fig. 7. As can be seen by the graph and the norms,
the 3D Solver does a nice job of approximating f;. Note that the CVBEM does reduce the error
slightly. The Linear method does not have much effect.

Figure 8 provides graphs of a slice through the primary cube parallel to the xy plane at a height
of 4.9 units above it. Slice graphs are given for 3D Solver only, 3D Solver plus CVBEM, 3D
Solver plus CVBEM plus Linear method, and finally for the actual function f,. All slice graphs
in this example look identical to the graph of fi. The actual errors involved are supplied by the
norms in the bottom half of the figure.

Example 2. To ascertain the effect of the CVBEM in approximating the error from the 3D
Solver, the number of 3D nodes was reduced to cne per side (6 total). In a number of program
experiments, the error on the primary cube from the 3D Solver has been reduced by up to 60%
by varying the number of CYBEM nodes used. Table 1 shows that, for the conditions given, the
CVBEM errors on a slice decrease as the number of CVBEM nodes increase.

From Table I, the experiment using 36 CVBEM nodes per plane (and 6 3D nodes) was quite
successful. Figure 9 illustrates that the 3D Solver left a large error on the primary cube. The same

TABLE L
Number of CVBEM CVBEM Ej error on CVBEM F; error on
nodes (per plane) cube (% 10%) slice (x 10%)
4 292 6.75
8 2.64 6.28
16 2.37 5.89
24 2.27 5.66
32 225 5.60

36 2.24 5.54
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F and 3D E1=F-3D
2. E+04 - 04
0.2
1 E+04 4 0
| 0.2
0.E+00 . , ; -0.4
0 200 400 600
E1 and CVBEM E2 =E1-CVBEM
0.4 C.4 v e e e |
0.2 0.2 I
0 0
0.2 -0.2 |
0.4 -0.4 - T T 1

0 200 400 600 0 200 400 600

******t**iatt*lk)kll****!******LEAST_SQUARES PROGRAM*‘********t*tﬁ*ttitt‘*tt'**‘!‘
FUNCTION: VRl + 1/R2 + I/R3
Side of Cube: 5
Offset for 3D Basis: 2
Number of Integration Poinis. 600
Number of 30 Basis Functions: 600
Number of CVBEM Basts Funetions: 108

3D SOLVER ERROR ANALYSIS: CVBEM ERROR ANALYSIS:
ABS: [F-Dx|| = 3849751 11e-001 ABS: ||[E1-Cyl| = 3.84062730e-001
REL: |[F-Dx|/|F]| = 2. 76946833-005 REL: | E1-CyIJIE1]| = 9.99967838¢-001

COMBINED 3D/CVBEM:
ABS: {|F-Dx-Cyjl = 3 84962730e-001
REL: |[F-Dx-Cyl/i|F]| = 2. 76937926005

LINEAR BASIS ANALYSIS: COMBINED 3D/CVBEM/LINEAR:

ABS: [|E2-Le|f = 3.84962730c-001 ABS: {[F-Dx-Cy-La}| = 3.84962730e-001

REL: |[E2-Lz|/[[E2]} = 1.00000000e+000 REL: |[F-Dx-Cy-Lzl/[[F|l = 2.76937926c-005
FIG. 7.

figure shows that the CVBEM decreased this 3D error by 51%. Figure 10 confirms that the 3D
slice error was cut down 43% by the CVBEM process. Note that the 3D slice is in error. Most of
the high bands of temperature are missing or misplaced. On the other hand, the CVBEM slice has
improved the approximation. These are impressive results considering that fy is quite different
from the CVBEM basis functions. And again, as before, the Linear method has little effect.
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3D Solver

A

ViU

3D/CVBEM/Linear

3D w/CVBEM

Enter # for plane parallel to slice (xy=1,xz=2, yz=3): 1
Enter constant variable value (slice constant): 4.9
Enter plot saturation value n{rxn plot saturation): 30

3D SOLVER ERROR ANALYSIS:
ABS: [F-Dx|| = 8.77519282e-+002
REL: |[F-Dx|/|[Fil = 4.38162460e-002

COMBINED 3D/CVBEM:
ABS: [[F-Dx-Cy|| = 8.77519121e+002
REL: [[F-Dx-Cy|/||F|| = 4.38163380e-002

LINEAR BASIS ANALYSIS:
ABS: [{E2-Lz/| = 8.7751912 1e+002
REL: [[E2-Lz|}/|[E2|| = 1.00000000e+000

CVBEM ERROR ANALYSIS:

ABS: [E1-Cy|| = 8.77519121+e002
REL: |[E1-Cy|/[E1]] = 9.99999817e-001

COMBINED 3I¥CVBEM/LINEAR:
ABS: |[F-Dx-Cy-Laz|| =8.77519121e+062

553

REL: |[F-Dx-Cy-Lz]/||F|} =4.38163380¢-002

FIG. 8.

Problem 2. The second function approximated by the program was the potential function

folzyy,z) = Re[(z +i)' + {x+i2)* + (y + iz)Y)

202* + 4% + 2 - 327y - 32727 - 3227
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F and 3D E1=F -3D
2'E+04 2E+04 [ S U — ..]‘
1.E+04 1 |
1.E+04 | h !
0.E+00 ,
0.E+00 , -1.E+04 . , |
, 0 200 400 600 0 200 400 600
E1 and CVBEM E2 =E1- CVBEM
2E+04 - s — . - 10000 1 e —
1.E+04 - 5000 1 5
0.E+00 1 f 0 %Mw
-1.E+04 : . ; -5000 ; ‘
G 200 400 600 0 200 400 600
- |
E2 and Linear E3 = E2 - Linear
10000 -
5000 -
O !
-5000 ‘ ;
0 200 400 600 0 200 400 600

dﬂt*ttv**!'ﬂ*#***tﬁﬁ#tt‘******LEAST_SQUARES PROGRAM*******“*‘#***ﬂ*t*ittt*'!***
FUNCTION: I/RY + 1/R2 + I/R3
Side of Cube: 5
Offset for 3D Basis: 2
Number of lntegration Points. 604G
Number of 30 Basis Functions: 600
WNumber of CVBEM Basis Functions: 108

30 SOLVER ERROR ANALYSIS: CVBEM ERROR ANALYSIS.
ABS: [E-Dxf| = 6.04741 746e-+003 ABS: [[E1-Cyll = 2.97870260e-+003
REL: [IF-Dx|Jj[F|| = 4.35044517c-001 REL: |[EI-CY[W{EL|} = 4.92557793¢-001

COMBINED 3DYCVBEM:
ABS: [[F-Dx-Cyl{ = 2.97870260¢+003
REL: ||F-Dx-Cy|W[F|l = 2. 14284567001

LINEAR BASIS ANALYSIS' COMBINED 3D7CVBEM/LINEAR.

ABS. |E2-Lz]| = 2.97870259e+003 ABS: |[F-Dx-Cy-Lazl| =2 978702590e+003

REL: |E2-Lz|}|E2){ =9.99995999%¢ 001 REL: |[F-Dx-Cy-La||/|[F|| = 2.14284567e-001
FIG. 9.

Example 3. In this example, the 3D solver was put to full use. The results on the primary cube
are given in Fig. [ 1. The 3D Solver approximated fa extremely well (note the absolute error of
2.8 x 107%). The CVBEM reduced this error a bit more (again 36 CVBEM nodes per plane or
108 total were used). The Linear method did nothing,
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3D Solver 3D w/CVBEM
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Enter # for plane parallel to slice (xy =1, xz=2,yz=3): 1
Enter constant variable value (slice constant): 4.9
Enter plot saturation value n(nxn plot saturation): 30

3D SOLVER ERROR ANALYSIS: CVBEM ERROR ANALYSIS:
ABS: ||F-Dx|| = 1.10717497¢+004 ABS: [[E1-Cy|i =6,37106924¢+003
REL: |[F-Dx|/||F|| = 5.52835277e-001 REL: |E1-Cy|/||E1| = 5.75434726e-001

COMBINED 3D/CVBEM:
ABS: |[F-Dx-Cy| = 6.37106924e+003
REL: |[F-Dx Cy|/|iF|| = 3.18120616¢-001

LINEAR BASIS ANALYSIS: COMBINED 3D/CVBEM/LINEAR:

ABS: [E2-Lz|| = 6.37107149¢+003 ABS: |[F-Dx-Cy-Lz| = 6.37107149¢+003

REL: {|[E2-Lz|}/|[E2|| = 1.00000035¢+000 REL: [[F-Dx-Cy-Lz|//|F|| =3.18120728¢-001
FIG. 10.

In Fig. 12, all slices appear to be identical. The norms show that the CVBEM slightly decreased
the error on the slice.
Example 4. Here the 3D nodes were decreased again to a total of only 6 to test the effectiveness
of the CVBEM process. The results are even more impressive than those from Example 2. Figure
i3 shows that the error on the primary cube left by the 3D Solver was quite large. The CVBEM
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FUNCTION: Re(Z2"4)
Side of Cube: §
Offset for 3D Basis: 2

Number of Integration Points: 600
MNumber of 3D Basis Funetions: 600
Number of CVBEM Basis Functions: 108

3D SOLVER ERROR ANALYSIS:
ABS. ||F-Dx|| = 2.754751 | 1e-002
REL: [[F-D|/{H] =1.262946833¢-003

COMBINEL 31/CYBEM:
ABS: |[F-Dx-Cy|| = 2.753562730¢-001
REL: |[F-Dx-CyllF|| = 1.262846833e-003

LINEAR BASIS ANALYSIS:
ABS. [[E2-La]| = = 2.753962730e-001
REL: ||E2-Lz]l/IE2], = 1.00000000e+000

applied to this error decreased it by 96%. And, as in all of the cases so far, the Linear method has

little error reduction effect.

The slice graphs provided in Fig. 14 show similar results. The 3D Solver graph looks nothing
like the slice of the actual function f>. The CVBEM plot, however, appears nearly identical to
that of fz. As evidenced by the norms, the CYBEM cut down the 3D Sclver error on the slice

by 91%.

CVBEM ERROR ANALYSIS:
ABS: [[E1-Cy|| =2.753962730e-001
REL: |[E1-Cy|l/|E1 = 9.99962565¢-001

COMBINED 3D/CVBEM/LINEAR:
ARS: {[F-Dx-Cy-Lz|| = = 2.753962730¢-001
REL. ||F-Dx-Cy-La]|/|Fl| = 1.262846833¢-003

FIG. 11.
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Enter # for plane parallel to slice (xy =1, xz=2, yz=3): 2
Enter constant variable value (slice constant): .1
Enter plot saturation value n(nxn plot saturation}: 30

3D SOLVER ERROR ANALYSIS:
ABS: [[F-Dx| = 5.90898304¢-002
REL: |[E-Dx||/|[F|| = 3.36752460e-005

COMBINED 3D/CVBEM:
ABS: ||[F-Dx-Cyl| = 5.90897314e-002
REL: ||F-Dx-Cy|l[/|[F|| = 3.36751896e-005

LINEAR BASIS ANALYSIS:
ABS: [[E2-Lz|| = 5.908973 | 4e-002
REL: [|E2-LzJ{{E2]; = 1.00000000e+000

CVBEM ERROR ANALYSIS:
ABS: |[E1-Cy|| =5.90897314e-002
REL: ||E1-Cy|}/||E1|| = 9.59998325e-001

COMBINED 3D/CVBEM/LINEAR:
ABS: [[F-Dx-Cy-Lz]| = 5.908973 14¢-002
REL: ||[F-Dx-Cy-Lz|/||F|| =3.36751896e-005

FIG. 12.

IX. CONCLUSIONS

In this article, the primary focus is to extend the CVBEM to solving potential problems in
three dimensions (3D). This is achieved by applying the CYBEM to three coupled projections
of the 3D problem domain, in 2I> planes, and then superimposing the resulting corresponding
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F and 3D E1=F-3D

E2 and Linear
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*t*t**#*tt*t*#tﬁtt#*t***tt#*LEASTLSQUARES PROGRAMt*"U*ﬁ*'ﬁ.*t***’h’****#********
FUNCTION: Re(Z74)
Side of Cube: 5
Offset for 30 Basis: 2
Number of [ntegration Points: 600
Number of 3D Basis Functions: 650
Number of CYBEM Basis Functions: 108

30 SOLVER ERROR ANALYSIS: CVBEM ERROR ANALYSIS:
ABS: [F-Dxj| = 4.72877840e+003 ABS: [E1-Cy} = 2.096035442+002
REL: |[F-Dsf/[Ff| = 7.050251 15¢-00) REL: [[EL-CYIPIEL| = 4.432551626-002

COMBINED 3D/CVBEM:
ABS: |[F-Dx-Cy| = 2.0960554de+002
REL. [[F-Dx-Cy|||F[| = 3.12506022¢-002

LINEAR BASIS ANALYSIS: COMBINED 3D/CYBEM/LINEAR:

ABS: |E2-Lzl| = = 2.00605541e+002 ABS: |[F-Dx-Cy-Lz|| = = 2.09605541e+002

REL: [E2-Lz)/][E2]| = .99999988¢-001 REL: [[F-Dx-Cy-Lz|/|[F[| = 3.12506018¢-002
FIG. 13.

2D CVBEM solutions. The new 3D CVBEM technique is also applied towards improving 3D
problem approximations, which are based on the usual 3D boundary element method (BEM)
techniques, by approximating the 31> BEM residual error. Finally, a technique to extend a 3D
problem geometry into higher geometric dimensions is introduced, and a corresponding numeric
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Enter # for plane parallel to slice (xy = 1, xz =2, yz=3): 2
Enter constant variable value (slice constant): .1
Enter plot saturation value n(nxn plot saturation): 30
3D SOLVER ERROR ANALYSIS: CVBEM ERROR ANALYSIS:
ABS: |[F-Dx|| = 2.41419819+003 ABS: ||E1-Cy|| =2.1290363 le+002
REL: |[F-Dx|//J[F|| = 1.37584958e+000 REL: || E1-Cy|//|[E1}) = 8.81881327-002
COMBINED 3D/CVBEM:
ABS: |[F-Dx-Cy|| = 2.12903631e+002
REL: ||F-Dx-Cy}/|[F|| = 1.21333605¢-001
LINEAR BASIS ANALYSIS: COMBINED 3D/CVBEM/LINEAR:
ARBS: [[E2-Lz|| = 2.12901476e+002 ABS: ||F-Dx-Cy-Lgj| = 2.12901476e+002
REL: [{E2-Lz|//||E2|| = 9.99989881e-001 REL: [|[F-Dx-Cy-Lz|{/||F|| =1.21332377e-001

FIG. 14.

error reduction technique is advanced, for use in superimposing multiple dimension approxi-
mations to improve 3D approximations, The application problems demonstrate the advantage
and utility in using multidimensional approximations in solving various dirnensional potential

problems.



560 HROMADKA

References

1. T. V. Hromadka II, and R. J. Whitley, Advances in the complex variable boundary element method,
Springer—Verlag, New York, 1998,

2. T. V. Hromadka II, and G. L. Guymon, A complex variable boundary element method: Development,
Int J Numer Methods Eng 20 (1984), 25-37.

3. C.A Brebbiaand ]. Dominguez, Boundary elements: Aniniroductory course, computational mechanics
publications, McGraw-Hill, New York, 1989.

4. T. V, Hromadka I, The best approximation method in computational mechanics, Springer—Verlag, New
York, 1993.



