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Abstract

Computer programs of rainfall-runoff models, such as HEC-1 and other related computer programs, utilize a set of algo-
rithms that represent the effects of catchment subarea runoff, network link hydrograph flow routing, and detention/retention
basin hydrograph routing. By subdividing a watershed into numerous subareas, and connecting the subareas by a network of
links, a link-node medel representation of the watershed is constructed. Each of the algorithms computationally solves a
prescribed relation by subdividing storm duration into unit periods-of-time of constant duration (e.g. 5 min). Such link-node
models are so flexible and comprehensive that one might conjecture that the algorithms and rules of linkage are sufficient to
simulate any storm runoff problem that can be formaltly expressed in the model. In contrast, the single-area unit hydrograph
{(UH) modeling approach represents a watershed as a single subarea, and utilizes a single UH to represent all of the effects being
modeled by a link-node model. The mathematical underpinnings of the single-area model UH are typically described in the
literature as being a “black box”. In this paper, a mathematical formalization of link-node models can be developed with the
computer program HEC-1 and the related systems will be introduced. The formalization is then used to establish, and also
dispel, some perceptions regarding application of such link-node models. © 1999 Elsevier Science B.V. All rights reserved.
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Nomenclature [‘}/AB] Toeplitz correction matrix, for storm {, for
routing algorithm between nodes A and B
'] Toeplitz matrix for storm £, used to equate Ar total watershed area
Ei; and Qi g" unit effective rainfalls, for storm £
[Bf]] single-area UH model Toeplitz correction e; reference (gauge) effective rainfall
matrix, for storm i runoff En model error, for storm i
18] Toeplitz correction matrix for storm i runoff e subarea j effective rainfalls for storm i
estimate, Oy F loss vector
18 [8'] correction matrix for subarea 1 and m identity matrix
storm I, inflow, at time ¢
LN link-node hydrograph mode
LR linear reservoir
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Pé vector representation of P;(t)

Oum modeled unit runoffs, for storm ¢

Q':l storm i runoff from subarea 1

D, model estimate of storm { runoff from
subarea 1

[Rasl  Toeplitz matrix representation of routing
algorithm between nodes A and B

SA single-area hydrograph model

T(n) space of n X n Toeplitz matrices, of form Eq.
(1)

[Tf] Toeplitz matrix equating ej» and ei,

UH unit hydrograph

[Uwm] UH model Toeplitz matrix representation of
a UH

Uw UH unit period values; first column vector of
[l

(U1 subarea 1 UH in Toeplitz matrix form

[Tl single-area UH model Toeplitz matrix
structure

1. Introduction

A general modeling procedure applied by many
agencies involves discretization of a watershed into
numerous subareas (perhaps dozens to hundreds)
connected by hydrologic-routing links (again, perhaps
dozens to hundreds). Unit hydrographs (UH) are
specified for each subarea as well as a loss function
such as the widely used phi-index (or ¢-index). The
US Army Corps of Engineers provides documentation
regarding application of the computer program HEC-
1 {US Army Corps of Engineers, 1990), to such catch-
ment modeling applications (e.g. DeVries, 1982).
Hydrologic flow-routing algorithms that are applied
to each modeling link typically use methods such as
Muskingum, Convex, translation, or Modified-Puls
(where outflow is proportional to storage, i.e. the
linear reservoir method). Subarea UHs are typically
developed using the Clark method, or regionalized
statistical relations (e.g. McCuen, 1989, p. 49).

In Hromadka and Whitley (1989), the Stochastic
Integral Equation Method (SIEM) is introduced and
is applied to rainfall-runoff model structures such as
the HEC-1 link-node UH model structure, and a math-
ematical description of the rainfall-runoff modeling
approach is provided on a storm-class basis. A storm
class is the set of all storms to which a particular

rainfall -runoff-model parameter set is assumed to
apply. When applied to the HEC-1 computer program
setting, the SIEM reduces to a system of Toeplitz
matrices that have several convenient mathematical
properties including the key property of commutative
matrix multiplication. This system of Toeplitz
matrices precisely describes the subject link-node
UH model structure as it is actually applied; namely,
in discretized time step unit-period additions and
multiplications.

Consequently, a mathematical formalization of
link-node model structures, as computationally devel-
oped by the computer program HEC-1 and related
systemns, is provided by the Toeplitz matrix systems
introduced in this paper. Given such a precise mathe-
matical description, progress can be made towards
answering questions regarding application and use
of such models, including the evaluation of model
performance and how to apply a link-node model,
among other topics. The formalization developed in
this paper provides another tool for use in future
research on the efficiency and accuracy of rainfall-
runoff models, (see, for example, Loague and Freeze
(1985) and McCuen (1989, p. 747)).

2. Mathematical development: key Toeplitz matrix
properties

A Toeplitz matrix [U] is an n X n lower triangular
matrix which has the form

I ] 6 - 0
uy o o - 0

Wi=4 #w w0 (1)
My Uy Uy - U

where the w; are real constants, i = 1,2,..., s The set

of all n X n Toeplitz matrices is denoted by T(n).

If [A] and [B] are elements of T(#), then under the
usual rules of matrix addition and multiplication the
following results are obtained:

(Al + [B] = [C] € T(m), (2)

(Al[B] = |D] € T(n), (3)
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[Al[B] = [B][A]L “)

Egs. (2) and (3) show that the sum and product of
Toeplitz matrices are Toeplitz matrices. Eq. (4)
provides the property, unusual for matrix multiplica-
tion, that the product of two Toeplitz matrices is
commutative, and the order of multiplication can be
interchanged. To prove Eq. (4), the properties of Egs.
(1) and (3) are used and considering only column | of
the resulting product Toeplitz matrix [D], as the
components of column 1 fully specify the matrix
[D]. For component (n, 1) of the product,

[ANBNA 1) = > @1 iy = D byirsa
k=] k=1

= [B][Al(n, 1) (3)

similarly for component (i, 1) of the product, for 1 =
i<n,
i+l i+l

[ANBIG ) = 3 aiviihi = D biy sy
k=1 k=1

= [BJIAI(i, 1} (6)

where a; ., =0and b, , =0fork=i+1.

Toeplitz matrices also satisfy key invertability rela-
tions. For example, let [A] € T(n) and [B] € T(n)
such that b; # 0, and therefore that the main diagonal
of [B] is nonzero. Then solving by means of back
substitution shows that there exists a [C] € T(n)
such that [A] = [C][B]. Similarly, if X and ¥ are n x
I column vectors such that the first component of ¥
(i.e. Y(1)) is nonzero, then there exists a [D] € T(n)
such that X = [D]Y.

The above properties of Toeplitz matrices will be
useful in the matrix manipulations applied in the
following mathematical development. Details regard-
ing the theory of Toeplitz matrices can be found in
Iohvidov (1982).

3. Toeplitz matrices applied to UH and hydrograph
flood routing techniques
3.1. The UH method as a Toeplitz matrix system

The UH method for developing a runoff hydrograph
can be expressed by use of a Toeplitz matrix system

where, for storm i,
O = [Uwmléy (N

where the subscript M refers to the UH model; Oy is
the n X 1 column vector of unit-period model runoff
values; ey is the # X 1 column vector of modeled unit-
periad effective rainfalls (unit-period rainfalls less
unit-period loss) for storm i; and [Uy] is the model
UH in 1 X n Toeplitz matrix form (see Eq. (1)). In Eq.
(7), the common dimension, #, is achieved by proper
extension of each vector or matrix with zeroes. From
Eq. (1), the matrix [Uy] is fully described knowing
only the first column vector, {/y,.

Example 1. Demonstration of the UH method as a
Toeplitz matrix system:

Let ey = (e1,€2)'; Upy = (41, 15, 13)". Then Qly is
given by )

g 23] 0 0 0 e
; [45) My Uy 0 0 [:) .
Ou = = = [Unlem
g 3 uy w040
qa 0 w3 wy w0

where ¢g; are unit-period runoffs, u; are unit-hydro-
graph values, and ¢, the unit-period effective rainfalls,
i=1,2,3, and the size of the matrix, n = 4, is deter-
mined by the desire to include all nonzero discharges.

3.2. UH model error analysis

In Eq. {7), the UH model rqnoff vector Qﬁﬂ differs
from the true runoff vector, g‘, where the storm i UH
model error, B}y is

En=0" - 0On (8)

But, the “correct” UH for storm i, U', and the
“correct” effective rainfall, ¢', are related to the true

Q' by

Q' =[Ue. (9)
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Relating Egs. (7)—(9),
Q' = [Uy + AUl + Ag)

= Qu + ([AU el + [UylAe' + [AU1AE)  (10)

where [AU'] and A¢' are the corrections to the UH
model [{/y] matrix and gfw vector, respectively. The
sum of the three components of the terms in parenth-
esis in Eq. (10) are denoted as the UH model error
vector, E *1. The above formulation is analogous to the
Stochastic Integral Equation Method representation of
hydrograph modeling error as presented in Hromadka
and Whitley (1997).

For storm i, E{w can be related to the UH model
estimate, Q}w by setting (recalling that @\ (1) # 0)

£y = [1Q4 (I

where [a'] € T(n), and is associated to storm i, Thus,
for m storms, there would be m Toeplitz matrices [«'];
i=1,2,...m(Example 2 demonstrates Eq. (11} by a
constructive development.}

But from Eq. (8), Q' = Q4 + Ei, so that

Q' = Qu + [1Qy = (M + [2'DQ = [B1Qh (12)

where [I] is the n X n identity matrix; and [#'] = [I] +
[&'] is another Toeplitz matrix in T(n) and, like [a'],
varies for every storm i. The correction of various
modeling estimates by use of the Toeplitz matrices,
such as that used in Eq. (12), is a recurring result in the
formalization presented in this paper.

Example 2. Demonstration of equating UH model-
ing error to the UH model output:

For storm i, assume that the true effective rainfall
vecior (for the UH model) is g". The UH model
assumes the UH to be the matrix [Uy] but, in reality,
the UUH should be, for storm i, [Ui]. Then the UH
model error in the runoff estimate is given by the
vector, E;\a, where

Ein = (U] - [UnDeé. (13)

But from Eq. (12), the true runoff, Qi, is given by
Q' = [B1QM = ([A1UMDe = [U')¢ (14)

so that the true UH, [U7], is related to the model UH,
[UM]a by

(U = [B1Un]. (15)

This situation s
BUMI = [U']e

so that

(B1UM) - [U'De’ =0

where 0 is the zero column vector, and because
gf(l)aféO, ([B1Un] — [U']) is the zero Toeplitz
matrix,

Combining Eqgs. (12), (13), and (15),

Eyv = ((B1[Un] — [UnDe' = (81— (IDIUy¢
= [ l[Upy]e'. (16)

Thus, from Eq, (7),
Eiy = {1} a7

which is the result derived from Eq. (11}.

3.3. Hydrologic hydrograph-routing methods and
Toeplitz matrix representations

Several flood-hydrograph-routing techniques that
have been widely used are, in fact, convolutions
(Hromadka and Whitley, 1989). Three popular rout-
ing methods are the Convex method, the Muskingum
method, and hydrograph translation. Another popular
hydrograph routing technique (especially when
storage attenuation effects are significant) 1s the modi-
fied-Puls method. A special case of the modified-Puls
method (and also the Muskingum method), known as
the linear-reservoir method, is analyzed in Topic 3
{Section 4.3). Toeplitz matrix representations will be
developed for these methods. The development of
Toeplitz matrix representations for other convolution
techniques is similar.

For the Convex method, which is used for many
studies involving the computer program TR-20
(SCS, 1984), outflow () and inflow ([) unit values
at typical model unit-period times ¢ and ¢ + At are
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Subarea 1
Node A

Node B

Fig. 1. A single subarea (#1) UH model runoff hydrograph with a
Muskingum routing link between nodes A and B.

equated by
Oy =(1 = OO0, + CT, 4, (18)

where C is a constant parameter that depends on the
channel, flow, and At characteristics, with 0 << C < 1.
By expanding the term O, in terms of the prior values
O, and [, _,, gives

Opia =0 =O[1 = CYO,_5, + CL] + Clyn,. (19)
Writing O,_ 4, in terms of prior values:
Orine = (1= PO, 0y, + (1 — CPCL_y, + (1

- OWCL + CI a,. (20)

Continuing the expansion as in Eqgs. (18)--(20) gives,
in matrix form,

0 C 0 0 o
O, (1-O0C C ollx
0; d-o'c a-o0cC c wolln
o, a-o'c a-ofc a-0rc - ol
O a-o'c -0'c =-ortc - |0
@n

where, in Eq. (21), the dimensions of the matrix and
column vectors correspond to a single unit routing
interval addition, Ar. The dimensions in Eq. (21), as
in all equations, are consistent. From Eq. (21), the
Convex routing technique is another application of a
Toeplitz Matrix.

The Muskingom routing methed is a widely used
technique available in the computer program, HEC-1.
In general, outflow (0) and inflow ({) are related by

Orvar = Colypar + i1 + GO, (22)

or, upon expanding the term O,
Orrar = Colpya + G + GGyl + Cil_a,
+ G0, 450 (23)

(see Hromadka and Whitley (1989) regarding topics
concerning coefficient constraints).

In Toeplitz matrix form, the Muskingum method
{again, for simplicity, neglecting a higher problem
dimension for vectors and assuming only a single Az
time step movement in time)

| O
| o,
|

O

L
| Cy 0 0 T
J (C) + CpCa) (o 0 R J'gl
= | OiC) + G (C) + CpCy) o ER A (Y
CyHE + CoCa) CFHC + GCa) CNE + GG+ Gull0
(24)

Given a particular routing method, the resulting
Toeplitz matrix to be applied to the model link
connecting upsiream node A to downstream node B
is noted as [Rsp], where the matrix depends on the
routing algorithm used.

Example 3. A single subarea runoff hydrograph
with Muskingum routing:

Fig. 1 depicts the UH model schematic of a single
subarea with a Muskingum routing link. The subarea
runoff hydrograph, from subarea #1, tributary to
model node A, is

Of = [U)1¢} (25)

where ) is the column vector of subarea #1 unit
runoff estimates; [U)] is the subarea #1 UH as per
Eq. (7), and g'i is the subarea #| effective rainfall
for storm 1.

Let [Rap] be the Muskingum routing Toeplitz
matrix analog as per Eq. (24), then the runoff
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Subarea 1 (K/@ Subarea 2
Node A
/@ Subarea 3
Node B &

./@ Subarea 4
Node C

Fig. 2. A four-subarea link-node UH model schematic.

hydrograph at model node B is
Ok = [Rag]Qi = [Rapl[U))e) (26)

where the hats in Eqgs. (25) and (26) indicate model
estimates (because Toeplitz correction matrices are
not included).

Example 4. Hydrograph routing modeling error
representation:

The Muskingum routing algorithm is only an
approximation, needing the Toeplitz correction
matrix [yag] such that the “correct” convolution
routing matrix would be the matrix product of [yag]
and [Rag]. If the Muskingum technique was correct,
then [yag] is the identity matrix. In general, [yag] will
differ, stochastically, for every storm, and can be
denoted as such by [yag) for storm i. Of course, with-
out runoff data, the various UH and routing correction
Toeplitz matrices are not known, and hence modeling
error is infroduced with each algorithm.

Including both the UH (see Eq. (15)) and hydro-
graph-routing technique Toeplitz correction matrices,
the storm i runoff vector, at node B, is

O = [Yapl[RaplQy = [YaslRagll AU 1)  (27)

Or
0% = [Yarl[B1[Ragl) = [YanllB110k (28)

where in Eq. (28), analogous to Eq. (12), all Toeplitz
correction matrices are assembled as an up-front
matrix product correction of the model’s approxima-
tion of the runoff hydrograph from Eq. (26).

Example 5. Translation in time of a runoff
hydrograph:

As another example of modeling the hydrograph
flow-routing process, consider “pure translation” of
the hydrograph such that the upstream hydrograph,
at node 4, is Q) = (q1.42.45,0,0,0) and the down-
stream hydrograph, at node B, is
QE = (0,0,49, 42, ¢1.0); ie. the hydrograph is trans-
lated forward in time by 2Az, where At is the unit time
period (such as 5 min), and there is no attenunation of
the hydrograph. Translation routing simulates a kine-
matric-wave routing response. The corresponding
Toeplitz matrix is [Rag], where now

G ¢ 0 0 0 0

O 000 00O

1 0 0 0 0 0
Ragl =

01 00 ¢ 0

001 0 0 0

0 0 01 0 0

and Qp = [RaplQ@s. The “translation” Toeplitz
matrix structure will be also used in Section 3.7 to
relate the variation in rainfall across the catchment
with respect to rainfall gauge data.

3.4. Link-node model structure representation as a
Toeplitz matrix system

A common practice in the application of the
computer program HEC-1 and related systems 1s to
subdivide the catchment into m subareas, &2, j=
1,2,...,m, generate runoff hydrographs Q/(r) in each
subarea using subarea effective rainfalls ej‘-(t), and the
subarea UH, U(t), and route and combine subarea
runoff hydrographs by use of a hydrograph-routing
algorithm such as the Muskingum methed. Such
models will be called “link-node” UH maodels.

Fig. 2 depicts a four-subarea link-node model.
Given subarea effective rainfalls, e}(t), j= 1,2: 3,4,
the approximation of the runoff hydrograph, Q¢(r),
at node C'is given by a direct extension of Example
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4 results:

Qe = [ReclRapl([U)1e: + [Usleh) + [Us]e)
+ [Ua)el 29)

where the hat indicates an approximation because
Toeplitz correction matrices are not yet included.

In comparison, analogous to the error analysis for
Example 4, the true runoff hydrograph, for storm i,
O-(r), at model node C is given by the inclusion of
Toeplitz correction matrices,

0 = [Yhel [Rec I Yaa IR N[BTV e} + [B5)
X [Uy)eh) + [BillUales) + [BilUleh.  (30)

In Egs. (29) and (30), [Rpr] and [Rag] are
hydrograph-routing Toeplitz matrices for model
network links BC and AB, respectively; [1/|] to [T/]
are Toeplitz UH matrices and &) to ¢} are effective
rainfall vectors, for subareas 1 to 4, respectively, and
for storm {; the Toeplitz correction matrices follow
from Egs. (27) and (28).

3.5. Comparison of a link-node UH model structure 1o
a single-area UH model structure

The link-node mode! structure (shown in Eq. (30))
can now be compared to a single-area UH model
structure by correlating subarea effective rainfalls
and re-grouping terms. The subarea effective rainfalls,
ejz(t), can be cquatecl to a reference effective rainfall,
eﬁb,(t), {for g’g (1) # (), by another set of Toeplitz
matrices,

e=[Tley;  J=12...m (31)
where [7}5' 1is a Toeplitz matrix which applies to storm
i (and varies for each storm} and subarea j. If ej‘-(t) =
ey(t), then [T}] is the identity matrix. Again, all
matrices and vectors have consistent dimensions.
Variations in storm magnitude and pattern are
included in Eq. (31), as well as translation in time
(refer to the translation hydrograph of Example 5).
Combining Egs. (30) and (31) provides a unified
UH model structure that still includes the identified
modeling error Toeplitz correction matrices (for the

example problem of Fig. 2),
Q6 = (ol Vap BT Rec IRAg1IU;] + [Yac]

X [YaplIB T3 Rec lRagl[Us] + [Yacl[B5)
X [TRec]Us] + [BTHUa el (32)

Eq. (32) is a sum of products of Toeplitz matrices in
T(n) and, from the properties of Toeplitz matrices,
simplifies to another Toeplitz matrix in T{n). Thus,
even though Eq. (32) represents numerous network
link routing algorithms and subarea runoff hydro-
graphs, with each algorithin’s output modified by
respective  Toeplitz correction matrices, and all
combined at model node C, the link-node model
simplifies to having a single-area UH model Toeplitz
matrix structure,

O = ([BoliUs el (33)

where the matrix product ([BB][UO]) is the sum of
several matrix products within parenthesis in Eq.
(32). In Eqs. (30) and (32}, the matrix product
commutability property associated with Toeplitz
matrices is applied extensively, enabling the previous
rewriting of terms. In Egs. (32) and (33), the various
sources of uncertainty and stochastic variations in the
subarea UH, link routing, and subarea effective rain-
fall algorithms, are fully accounted for on a storm
basis, i. Additionally, the link-node model structure
of Eq. (32) includes several sources of uncertainty that
cannot be isolated because they are a matrix product
of several random processes.

The results of Eqgs. (32) and (33) are extendable o
any link-node model that can be formally expressed in
the computer program HEC-1 or related systems.
Consequently, it is now possible to mathematically
describe and manipulate the subarea UH runeff hydro-
graphs and the link hydrograph routing submodels
used in a typical link-node model structure of a catch-
ment, such as the UH and Muskingum routing options
in HEC-1 (see US Army Corps of Engineers, 1990), or
the UH and Convex routing options used in TR-20
(SCS, 1984}, among many others.

3.6. Comparison of the Toeplitz matrix formulation to
the stochastic integral equation method

The Stochastic Integral Equation Method or SIEM
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(Hromadka and Whitley, 1989) provides a mathema-
tical representation of rainfall-runoff models by use
of stochastic processes. The Toeplitz matrix systems
used in this paper are discretized versions of the
stochastic integral equations used in the SIEM, and
hence the theoretical underpinnings of the SIEM
applies also to the Toeplitz matrix formulation.

For a matrix [A] € T(n), it is seen that [A] is fully
defined by an n X 1 column vector ¢ where

al al 0 . O
[253 (73] a) 0

a=| | = ) SE
ay a, anp-1 4

The vector ¢ 1s a discretization in time of a typical
realization of a stochastic process in the SIEM. Also,
due to the need to solve the SIEM systems computa-
tionally, methods are required that provide numerical
integration of the stochastic integrals (Hromadka and
Whitley, 1989), resulting in the Toeplitz matrix
systems derived above. Consequently, the matrix
systems invelved in the numerical integration of the
stochastic integral equations, and the Toeplitz matrix
systems developed in the current paper, are seen in
practice to be the same. This observation provides a
direct link between the computer program HEC-1 and
related systems, and the SIEM.

3.7, Including rainfall variations across the
catchment

In this section, a Toeplitz matrix is constructed by
considering the sum of proportions of translates of a
reference vector. Given the reference rainfall data, for
storm £, at a rain gauge, P;(t), the rainfall at another
location, Pi(7), can be modeled as the sum of products
of proportion factors (which are variable between
storms) with the P,(z), as follows:

Pty = Xy Pty + ApPy(t — An) + ApPi(s — 2A1) + -

"y

=D NPyt — (k — DAD (35)
k=1

where Py(7) = 0 for (7) < 0; Ar is the model time
step; and n, 1s sufficiently large to achieve the selected

accuracy (issues regarding n,, Az, and analogs to the
generalized Fourier series can be found in Hromadka
and Whitley, 1989).

In vector form, P}(t) can be represented as
f’T ={p.p2,..--p,). and the various translates of
Eq. (35) follows. For example

C 00 0
0 00 0
P21
1 0 0 0
. JLp)
Pt—-2an=|0 1 0 0 (36)
0 1 0
: pH
o o0 ¢ - 0

Thus, Eq. (35) can be written as another Toeplitz
matrix system composed of n, Toeplitz maltrices,

1 0 ¢ 0 0
01 0 1 0 0
oo 0o Jo1 o0
R N T
0 o 1 0 0 0
0 0 0
0 0 0
110 o
+),;.30 | 0P‘g+
0 O 0
A0 0
N A0 0
PV Y 0lp!
A Ay Ay o A (37
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where the Toeplitz matrix on the right-hand side of
Eq. (37), is referenced to storm i, where point j is
usually the centroid of subarea {2, Denoting this
final Toeplitz matrix of Eq. (37) as [V]], then

P = V1P, (38)
which 1s a relation analogous to Eq. (31).

Example 6. Effective rainfall variabilities for a
constant fraction loss rate model:

If the loss function is a constant proportion loss
fraction (1 — ¢;), for subarea {2;, where 0 < ¢ <1,
then

€ = ¢ [VIP, = [T)e} (39)

defining, for this loss function the relation between
[Vi] and [T].

4, Some additional topics

In the following, a few topics of possible interest
are focused upon.

4.1. Topic 1: derivation of the UH method as an
approximation

The UH method can be derived as an approxima-
tion {from a certain natural assumption. To begin, let
the effective rainfall on a catchment or subarea, at
times # = j(Af, be e, ...e, with discharges

g1.---- ¢, at the same times. Consider the increments
Aek =& T Ep, (40)
Agy = gy — gy (41)

for k=1,2,....n, where ¢; = 0 = g,
1t is plausible to assume that there is an unknown
function f of M variables with

Aqk :f(Aek,Aek“I,...,AE],O,O,...,O). (42)

The assumption that such a function exists is really the
assumption that the hydrologic process which
produces incremental discharge from incremental
elfective rainfall, via Eq. {42), is stationary; i.e. start-
ing at any base time f,, the same sequence of incre-
ments in effective rainfall will produce the same
sequence of incremental discharges. The interpretation

of f requires
J,..,0y=0. (43)

To simplify the notation, write f(x,...,x,,) for the
right-hand side of Eq. (42), and £0) for f(0,...,0).
Applying a Taylor series expansion yields

M 3 62
flx,Lx) = 5{;(0)}{,. +> > ax-;ij- (O)xx; + -
LA | i

(44)

For small Ae;, neglecting the higher order terms
results in

Agy = a,Ae, + e, |+ T oae (45)
where

_ U
a = o (0). (46)
Then

Ag, = aile, — O
Agy = ajle; — e} + asle; — 0)

47
Ag, =a\le; — e, ) T +ale; —0)
Add by columns to obtain
4 = e + ey + -+ oaeg (48)

(keeping in mind that if the approximation (45) is
good to within £, (48) may only be accurate to within

ke).
Then
a O 0 - 0le q)
dy a, 0 0 €) 7%
= (49)
Ay Qg Gy A€ 9k
and the Toeplitz matrix
a ¢ - 0
a a - 0
A= _ (50)
L A



T.V. Hromadka 11, R.J. Whirley / Journal of Hydrelogy 223 (1999) 66--84 75

is the UH producing 4,...,q; from e,...,e,. A
similar derivation can be developed for various
hydrograph-routing Toeplitz matrices.

4.2. Topic 2: approximating uncertainty in link-node
UH models for risk analysis

Given the link-node UH model structure of Eq.
(32), an approximation of modeling uncertainty due
to variations in storms can be developed by treating
the output of the link-nede UH model structure as a
single-area UH model (see Eq. (33)), and multiplying
each link-node UH model output by the set of runoff
hydrograph Toeplitz correction matrices (rescaled to
the study catchment) developed for single-area UH
models (Hromadka and Whitley, 1997).

For example, if {[Bf]; i=1,2,...,k} are k storm
Toeplitz correction matrices (properly scaled to the
catchment under study), such as that developed in
Egs. (15)—(17), and QJ 18 a link-node UH model
output vector for a storm J» then an estimate of the
distribution of hiydrograph predictions is the discrete
set of outcomes:

{1 i=1,2,...k}. (51)

In Hromadka and Whitley (1997), details and math-
ematical derivations are provided regarding the appli-
cation of Eq. (51) to single-area UH model structures
such as Eq. (33). It is noted that in the application of
Eq. (51), the Toeplitz matrices [ ] are conditioned
according to the loss function transform used to
develop effective rainfall (rainfall less losses from
rainfall). Additionally, one may further condition
[B8'1 matrices of Eq. (51) according to classes of
storm size and intensity such as that discussed in
Hromadka and Whitley (1989).

4.3. Topic 3: linear-reservoir basin routing and
natural valley storage effects

The level-pool reservoir or modified-Puls method
for routing a hydrograph through a flood-control
basin, or for modeling the effects of natural valley
storage, is given by the relation

U, + LY2 = (0, + 02 + (S, — 5))Ar (52)

where [, and O, are inflow and outflow at reference
time 1; ) is the storage at time 1; subscript 2 refers to

future time 2; and Ar is the time step size. In the case
of a linear storage-discharge relation, where the
storage versus depth, and discharge (outflow) versus
depth relations are proportional, then & = kS, and the
resulting linear-reservoir method may be rewritten as

U, + 12 =(0, + 02+ (0, — O)DkAr.  (53)

Combining the terms, the following equation is
obtained:

(,'l]] + C;)Iz + C3O] = 02 (54)

where ¢| = ¢y = kA2 + kAr), ¢3 = (2 ~ KAD/2 +
kAf);, which is analogous to the Muskingum routing
technique, can be entirely expanded in terms of only
inflow unit values, resulting in another Toeplitz
matrix system

¢ 0 o a0 - 0
;{1 + ¢y} € o ¢ - 0

0= C1C3(1 + C3) Cl(] + Cg,) < o - 0 7
adi Ml te) ad ey - g

(55)

or, letting [LR] be the above Toeeplitz malrix
0 = (LR (56)

where O and { are the outflow and inflow unit-period
value vectors, respectively.

As before, any routing technique is only an approx-
imation and hence there would be another associated
Toeplitz correction matrix involved. The [LR]
Toeplitz matrices can be inserted and manipulated
into the link-node UH model structure of Eq. (32)
analogous to the other Toeplitz matrices in that
equation.

Given the Toeplitz matrix systems developed for
the Convex, Muskingum, translation, and linear-reser-
voir hydrologic-routing procedures, the issue arises as
to which routing method is the “best”? All of these
methods are simply different Toeplitz matrices; is
there a “best” Toeplilz matrix? That is, what element
[H] € T(n) best satisfies 0 = [H]I? If data are avail-
able for @ and I, then [H] is uniquely solved by
forward substitution, and is simply a convolution
such as that studied by Doyle et al. (1983) and Becker
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and Kundzewicz (1987), among others. That is, only
the convolution technique that solves ¢ = [H]I,
determines the “correct” Toeplitz matrix [H].

It is noted that the above Toeplitz matrix system
can also be used when the subarea (or total catchment)
exhibits storage effects analogous to the proportional
outflow—storage relation used in the above derivation
of the [LR] matrix.

4.4. Topic 4: reducing a link-node UH model to a
single-area UH model structure

Many types of loss functions can be specified in a
rainfall-runoff model. Up to this point, no particular
loss function has been specified to develop g; vectors.
For the remainder of this paper, the distributed phi-
index type of loss function is considered. Many other
types of distributed loss functions can be formulated
in terms of Toeplitz matrix structures.

For the example problem of a four-subarea link-
node UH model {(Fig. 2), the modeled runoft hydro-
graph, for storm i, is the approximation QLN, where

Oin = [ReclRapllUle} + [RpcllRaglUslel

+ [RecllTUsles + [Uslel (57

where the subscript “LN” refers to the “link-node”
medel siructure, and the hat indicates that the Toeplitz
correction matrices are not included, and, hence, only
an approximation is obtained. For the conditions that
each gj = Pé — ¢; (ie. the typical phi-index loss
function is used for each subarea, and there is a single
source of rainfall data for storm i, f‘;, with P;(t) = _cf)j
for each subarea f), then the above expansion for Qf
can be rewritten as

Oln = [UnIP, — [FLy18 (58)
where
(U] = [RgcllRapl([(U;] + (U] + [RpellUs)

+ [Udl, (59)

[Fin] = [RpelIRagl([U 1) + [Us]e2)

+ [RpcllUslds + [Usdlds {60)

where §; is an nX 1 column vector such that the
values of rows 1 to k are 1, and the values of
rows k + 1 to n are zero, and subscript k refers to
storm { with a duration of Az,

It is noted that Eq. (57) is a restaterent of Eq. (30)
without the Toeplitz correction matrices. From Eqgs.
(59) and (60), given the subarea UH unit values and
the hydrograph-routing Toeplitz matrix unit values,
an equivalent single-area UH is directly developed
as [Upn]), and the distributed phi-index loss function
is represented as a new vector, Fy, which is the first
column of [Fiy] in Eq. (60).

If each subarea has identical phi-index values, ¢, =
by = @3 = ¢y = ¢y, then Eq. (60) simplifies to

Fin = dollhn] (61)

and the equivalent single-area UH model of Eq. (58)
simplifies to

Oin = [Uin)e, (62)

where gé_ is the discretized vector representation of
(Py — ¢o). and ¢p, = .

A similar development of the above equations can
be made for other loss rates, such as the constant
fraction loss rate.

As in HEC-1 the phi-index method is a widely used
loss function, hydrograph routing is typically modeled
wsing a hydrologic technique such as the Muskingum
method, and natural valley storage can also be
modeled (for outflow being proportional to storage)
as a Toeplilz matrix, the above mathematical relations
provide a reduction of a complex link-node UH model
structure to the single-area UH model structure of Eq.
{58).

Example 7. Reduction of a HEC-1 link-node UH
model to a single-area UH model: San Sevaine Creek.

A HEC-1 link-node UH model was prepared for the
137 km® San Sevaine watershed in the City of
Fontana, CA. The HEC-1 model is composed of 24
Muskingum routing links and 19 subareas, each
subarea with its own UH and phi-index loss-rate func-
tion (see Table 1).

Rather than directly constructing the link-node UH
model [Uy] and [Fry] Toeplitz matrices using the
equations developed previously, these two matrices
will be developed indirectly by equating the
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Table 1
Example 7 link-node UH model parameters
Subarea data Muskingum routing data
Subarea Area (km*mi%) Phi-index S-graph® Lag (h) Link ID X K (h)
number ({mm/h)/(in/h))
1 13.08/5.05 9.65/0.38 Fullerton—San Jose S-graph 132
1-2 0.1 0.047
2 19.63/7.58 9.91/0.39 Fullerton—San Jose S-graph 046
3 6.58/2.45 10.41/0.41 LACDA" Urhan $-graph 0.41
3(2)--3.1 0.1 0.047
3.1-32 0.1 0.047
32-4 0.1 0.047
4 9.32/3.6 9.14/0.36 LACDA Urban 8-graph 0.53
4-4.1 0.1 0.047
4.1-472 0.1 0.047
4.2-5 0.1 0.047
5 9.53/3.69 8.38/0.36 LACDA Urban S-graph 0.46
5-3.1 0.1 0.047
5.1-5.2 0.1 0.047
5.2-6 0.1 0.047
6 5417209 6.35/0.25 LACDA Urban S-graph 0.38
11 14.04/5.42 9.91/0.39 Fullerton—S8an Jose S-graph 0.33
11-12 0.1 0.047
12 0.75/0.29 13.97/0.55 Fullerton—San Jose S-graph 0.14
12-12.1 0.1 0.047
12.1- 0.1 0.047
12.2
12.2--13 0.1 0.047
13 3.57/1.38 15.49/(1.61 LACDA Urban S-graph 0.33
13-13.1 0.1 0.047
13.1- 0.1 0.047
13.2
13.2- 0.1 0.047
133
13.3-14 0.1 0.047
14 1.11/0.43 7.62/0.30 LACDA Urban $-graph 0.19
14-16 0.1 0.047
15 3.76/1.45 9.14/0.36 LACDA Urban S-graph 0.38
13(6)- 0.3 0.071
16
16 16.39/6.33 6.35/).25 LACDA Urban S-graph 0.62
16-17 0.1 0.047
17 3.19/1.23 1.78/0.07 LACDA Urban S-graph 0.50
17-18 0.1 0047
18 3.85/1.49 1.78/0.07 LACDA Urban S-graph 0.33
18--19 0.1 1.047
19 20.85/8.05 7.11/0.28 LACDA Urban S-graph 0.60
19--20 0.1 0.047
20 3.00/1.16 1.78/0.07 LACDA Urban S-graph 0.33
21 1.19/0.46 2.29/0.09 LACDA Urban S-graph 0.26
21¢20)- 0.1 0.047
22
22 1.27/0.49 1.52/0.06 LACDA Urban S-graph 0.29
22-23 0.1 0.047
23 1.17/0.45 1.52/G.06 LACDA Urban S-graph 0.29

* §-graphs are from HEC-1 (LAPREL! version). LAPREL, Los Angeles Preprocessor #1, for HEC-1.
" LACDA, Los Angeles County Drainage Area.
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Fig. 3. Multi-peaked rainfall pattern used in Example 7.
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Fig. 4. Comparison plots of San Sevaine link-node UH HEC-1 (dashed line} versus the single-area UH representation (solid line).

single-area UH model structure representation to the
HEC-1 link-node UH model cutput as described by
the following procedure.

The approach used is to set both the single-area UH
model and the link-node UH model using identical
unit period values of rainfall. By choosing a unit
period rainfall that exceeds all subarea loss rates
(used in the link-node UH model), the eifective rain-
falls can be mathematically described by the previous
equations, for each subarea. In the current case, a
5 min unit rainfall of 0.2 in. exceeds all subarea phi-
index loss rate values. The link-node UH model,
HEC-1, with the parameters given in Table 1 was
used to generate runoff from two single unit-peried
storms, one with .2 in. of unit rainfall and the other

with 1.2in. of unit rainfall. By subtracting the
ordinates of the simulated runoff for the first unit
storm from those of the second unit storm, the UH
(ie. 1in. of runoff) corresponding to the entire
HEC-1 model is obtained. The link-node model and
the synthesized single-area UH model are then
applied to a multi-peaked rainfall time series (Fig.
3) and yielded identical results (Fig. 4). The mathe-
matical underpinnings of this approach are described
in the following text.

A unit pulse vector, §;, is a »n X 1 column vector
where the values of rows 1 to k are 1, and the values of
rows £+ 1 to n are zero. Choose any unit-period
precipitation value, p“, such that p“ > ¢, for each
subarea j (recall that in this development, unit-period
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Table 2

Equivalent single-area UH model Teeplitz matrix terms for Exampte 7 (column 4 is the single-area model UH equivalent to the 19 subarea
HEC-1 model; column 5 is the loss vector equivalent to the distributed phi-index function) {maximum phi-index unit period value, 1.30 mm
(0.051 in.}; the numbers in the table are rounded off)

) (2) , 3 @) )
Unit # gP=02)" gPr=12) [U]: (3 — () [Fl: [U1* (02— Q (P=0.2)
1 77 482 405 4.00
2 371 2327 1956 20.20
3 862 5431 4569 51.80
4 1549 9821 8272 105.40
5 2264 14 486 12 222 180.40
] 2906 18 788 15 882 270.40
7 3455 22 581 19 126 370.20
8 3991 26 364 22 373 483.60
9 4550 30 356 25 806 611.20
10 5128 34 508 29 380 748.00
1 5600 37972 32372 874.40
12 5856 39 971 34 115 967.00
13 5919 40 604 34 685 1418.00
14 5699 39218 33 519 1004.80
15 5121 35316 30 195 918.00
16 4286 29 584 25 298 773.60
17 3352 23 149 19 797 607.40
18 2500 17 266 14 766 453.20
19 1826 12 614 10 788 331.60
20 1335 9226 7891 243.20
21 1001 6921 5920 183.00
22 774 5350 4576 141.20
23 609 4207 3598 110.60
24 481 3327 2846 88.20
25 376 2598 2222 68.40
26 288 1993 1705 53.00
27 219 1521 1302 41.40
28 166 1154 988 31.60
29 126 877 751 24.20
30 9% 688 589 18.80
31 80 559 479 15.80
32 66 462 396 13.20
33 55 383 328 10.60
34 46 319 273 8.60
33 39 269 230 7.00
36 33 226 196 6.20
37 28 194 166 5.20
38 23 161 138 4.60
39 19 131 i12 340
40 16 109 93 2.60
41 14 96 82 240
42 13 89 76 2.20
43 12 86 74 2.80
44 12 84 72 2.40
45 12 81 69 1.80
46 11 75 64 1.80
47 9 65 56 220
48 7 50 43 1.60
49 5 34 29 0.80
50 3 20 17 0.40
51 1 9 8 0.60
52 1 4 3 — 040

* QP = .2) is the runoff hydrograph from 27-link and 19-subarea link-node UH HEC-1 model, given a single unit period storm rainfall of
0.58 mm (0.2 in).
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rainfall is assumed to exceed unit-period losses) and
define the unit-period precipitation value p° = p* + 1.
Then, precipitation vectors, _p“ and ~p”, are defined by

p'=p%;  pt=p"8 (63)
where p“ and pbare n X 1 column vectors (consistent
with all other matrices and vectors) composed of
zeroes except at row 1, where unit-period values p°
and p” are defined, respectively.

Let Oy and Q"iN be the runoff hydrographs from
the link-node UH model operating on precipitation
vectors p“and ~pb, respectively. Equating the vectors
Qin and Q’{N to the single-area UH model structure
gives, from Eq. (58),

Ofn — Qin = [ULNQ" — p%) = [ULN18) (64)

where (gb ~ p“) = 8. But [U 18, is simply the first
column of [U1y]

fUnlé =} (65)

and, the single-area UH Toeplitz matriz, [Uy], is
completely specified by knowing i, 1, ..., u,.

In Eq. (60), we can rewrite each vector ¢, with
respect to storm { by

¢ = ¢i = &% (66)

where kAr is the rainfall duration of storm i, §§C is a
unit-pulse vector as defined previously; and ¢; is the
subarea j phi-index value. Let ¢ be a reference phi-
index value, then each ¢j = kdeO where k; are
constants. Then, Eq. (60} can be rewritten as

[Fin] = dp(RecHRBapl(U; 1k + [L5]%2) + [Rpe]

X [Uslks + [Uslks)8h = dolLin]- (67)

To compute the parameter ¢y, a mass balance is
applied based on the runoff vector Oy where total
rainfall (i.e. p“Ar) less total runoff (i.é. the sum of the
unit runoff values of Q7y) equals total losses (i.e.
$oAr), where Ay is the total catchment area, and

appropriate units are used (including the timestep
chosen, Ar),

Finally, the Toeplitz matrix [F) ] is determined by
solving

Qin = [Un1p® — [Fin18) = @°[ULN] -~ [FinDd

(68)
or,
fi ul e
fa wl |6
Fadi=| =P || | (69)
o il 4w

For the San Sevaine watershed HEC-1 link-node
UH model, the various matrices are shown in Tabie
2. The equality of the single-area UH model with the
24 link and 19 subarea HEC-1 model is demonstrated
by the equal model outputs for various storm events
{where unit rainfalls exceed unit losses), an example
of which is shown in the muttipeaked storm of Fig. 3
and the corresponding runoff hydrographs of Fig, 4.

5. Discussion

From the previous derivations, a HEC-1 type
distributed phi-index loss rate link-node model is
mathematically equivalent to a single-area UH
model structure

Qin = [UinIP ~ dgllin)s (70)

where ¢yl n] = [F1n] is a Toeplitz matrix; the dura-
tion of storm i is kAs; [Upy] and [L;x] are Toeplitz
matrices constructed from combining the subarea UH
and loss rate Toeplifz matrices and link hydrograph-
routing Toeplitz matrices. The Toeplitz matrices
{Uin] and [Lin] are defined by the previously devel-
oped mathematical relations, and fully represent the
link-node UH model structure, for the conditions
assumed. If the subarea ¢; are all equal to ¢y, then
(Fin] = do[Uin]  and  Qin = (UNIE" — dodi).
which is the Toeplitz matrix form of the more tradi-
tional single-area UH model structure. Many other
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types of distributed loss functions defined in subareas
will result in a Toeplitz matrix structure.

If one chooses parameters for each component of
the link-node UH model, then the model structure
produces runoff hydrographs Q] y (again “LN” refers
to a “link-node” model) as

Oin = [UIP' ~ [FLN18, (71)

where [Uiy] and [Fin] are the link-node model
Toeplitz matrices constructed by the assemblage of
the numerous link and subarea modeling element
Toeplitz matrices.

In comparison, the traditional single-area UH
model structure produces runoff hydrographs Q%,
(where “SA” refers to a “single-area” UH model) as

Qka = [UsalP' — [Fs218 (72)

where [Ug,] and [Fss) refer to the single-area UH
model Toeplitz matrices which are deveioped by
direct calibration to gauged data (or from statistical
evaluation of regional data).

Both the LN and SA models are calibrated to the
same rainfall-runoft data. The SA model calibration
process can be interpreted as the calibration of the
numerous mutually dependent relations interior to
the watershed such as the subarea UHs and phi-
index values, the choice of link routing algorithm
and parameters, and natural valley storage effects.
Meanwhile, the LN model contains numerous
constraints and errors imposed by the prescription
and selection of algorithms, processes, and relations,
leaving only a handful of parameters to be variable
{and, furthermore, whose values are typically
constrained to lie within “rational” limits).

Both the LN and SA models are seen to have iden-
tical mathematical structures; they simply differ in
their Toeplitz matrix compoenents. The question then
arises as to which Toeplitz matrix set is “best”; is
modeling error reduced by using the Toeplitz matrix
set {[Uyn], [Fin]) instead of {{Ugal, [Fsal}? Given
the rainfall-runoff data for several storms, one cali-
brates the LN matrices by varying modeling algorithm
parameters within prescribed domains; the resulting
calibrated Toeplitz matrices are denoted as
{lUIN], [Fin]}. The SA maitrices can be calibrated
by solving a least-squares error minimization problem

simultaneously with respect to all storms and with
respect to the n components of [Ug] and the n compo-
nents of [Fy4], resulting in the unique calibrated # X n
matrices {[US4), [F§al}- As {[Usal, [Fsal) achieves
the minimum variance between the model structure
and all the data, then the calibrated LN matrix set
can perform no better. Although link-node models
do not necessarily result in improved fits to measured
hydrographs relative to single-area UH models; they
have advantages for planning and design because
changes in the watershed or channel can be consid-
ered. For example, if one subarea is urbanized, new
loss rates and subarea UHs can be developed and the
changes in runoff for the watershed can be examined.

Other topics that are readily developed include
baseflow effects, multiple rain gauge data sources,
and the conditioning of the Toeplitz matrix system
representations with respect to storm classes (and
hence including the effects of quasi-linearity). These
topics follow directly from the Stochastic Integral
Equation Method formulation of Hromadka and Whit-
ley (1989).

5.1. Topic 6: calibrating the single-area UH model
structure

The mathematical structure under study is, with
respect to any storm i/,

Qs = [UsplP' — [Fsal; + B (73)

where B = b8, [Fsal = dpllsal, by is a selected
constant baseflow, ¢ is a selected loss rate reference
phi-index value. Although the mathematical develop-
ment has not considered in detail the constants by and
by, these are likely to vary on a storm-class basis
{Hromadka and Whitley, 1989); for example, different
antecedent soil-moisture conditions tend to correlate
with different values of by and ¢b. The SA model is a
function of (Zr + 1) parameters:

([FD>=<u|9u2""’uﬁ;fl’j‘z""’ﬁi; b0> (74)

where (P} is the SA model parameler set, u,, 4y, ..., i,
are the [Uy] Toeplitz matrix components, f},fz,...,f,
are the [F] Toeplitz matrix components (because ¢, is
typically chosen (i.e. weighted} to “balance” runoff
volumes), and b, may also be chosen based on
assumed conditions, resulting in 2n + 1 parameters
for {P}.
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Model error, for storm i, noted as E', is
E'=0' - 0§, (75)

and a £, (ie. the usual least-squares residual
minimization} measure of error is £ where

Ey =3 (g}~ qisa) (76)
=1

where qj and q}SA are the unit-period j values from Qi
and (. respectively.
The total £, error, for m storm events, is E,, where

e

E,=YE, (77
=1

In the above, weightings may be imposed to focus a
better fit towards peak flow rate, or other attributes
(such as the parameters by and ¢). Obviously, the
choice of weightings affects the SA model parameter
set, (P

The {P) set is determined using Gramm-—Schmidt
vector orthogonalization techmiques such as
Hromadka and Whitley (1993, Chapt. 5). The result-
ing calibrated set is {[P°), which minimizes the total £,
error according to the weightings prescribed (if any).
In this case, €, error minimization is across all storms,
rather than on a storm by storm basis. Once a {P°} is
determined, it is suitable for statistical regionalization
analysis with other catchment {P°) sets, analogous to
the procedures described in DeVries (1982).

In comparing calibrated the LN and SA models, for
the type of forecasting problem posed, for the same
weightings of the £, residual error, the SA model
achieves the minimum £, error and hence the mini-
mum modeling error variance; thus, the SA model is
the best estimator by this measure. When runoff data
are not available, then the comparison is between an
uncalibrated LN model and a SA model based on
regionalized trends (for SA model (P} parameter
sets); and as of this paper’s writing, there is no
proof that either model is the best estimator.

In the San Sevaine catchment HEC-1 example
problem, an LN model Toeplitz matrix set was devel-
oped using various submodel parameters and

algorithms. Other choices of submaodel parameters
and algorithms would result in a different set of LN
model Toeplitz matrices. Thus, a large number of
plausible LN model Toeplitz matrix sets is possible,
each set being a possible candidate as a runoff hydro-
graph estimator. The problem is selecting the Toeplitz
matrix set that is the best estimator according to the
error measure selected. The above £, minimization
procedure provides the best estimator, and this best
estimator provides the minimum variance in modeling
error, Because the LN models do not achieve the mini-
mum residual error, it is possible to have “model
response surfaces” in which “parameter contours”
can be described that result in identical total £, resi-
dual error values, and hence exhibit “optimized”
parameter sets that are not unique.

6. Conclusions

The UH rainfall-runoff method is mathematically
formalized in the setting of multiple subareas linked
together by a network of hydrologic routing links
(such as used in the computer program HEC-1 and
related computer programs), with UHs developed in
each subarea, a distributed phi-index loss rate defined
on a subarea basis, and a hydrologic routing method
used for each link such as the Muskingum technique.
Toeplitz matrices are developed for several of the
algorithms available in computer program HEC-1
and related systems, including subarea runoff hydro-
graphs using a subarea UH and a phi-index loss func-
tion; modified-Puls hydrograph routing with a linear
storage versus discharge relation: the linear reservoir
method;  hydrologic routing using Muskingum,
Convex, convolution, or pure translation methods;
combining watercourse runoff hydrographs at conflu-
ence points; linking subareas; mixing routing meth-
ods; adding hydrographs, and inclusion of rainfall
variations across a catchment. These Toeplitz
matrices mathematically describe the various hydro-
logic model processes and provide a firm mathemati-
cal formalization for rainfatl-runoff computer models
such as HEC-1. The Toeplitz matrices are easy to
manipulate algebraically, and reduce the effort needed
to investigate various tasks concerning the perfor-
mance and accuracy of rainfall-runoff models such
as the computer program HEC-1.
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